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Abstract

Analysing seasonality in count time series is an essential application of statistics to predict phe-
nomena in different fields like economics, agriculture, healthcare, environment, and climatic
change. However, the information in the existing literature is scarce regarding the perfor-
mances of relevant statistical models. This study provides the Yule-Walker (Y-W), Conditional
Least Squares (CLS), and Maximum Likelihood Estimation (MLE) for First-order Non-negative
Integer-valued Autoregressive, INAR(1), process with Poisson innovations with different monthly
means. The performance of Y-W, CLS, and MLE are assessed by the Monte Carlo simulation
method. The performance of this model is compared with another seasonal INAR(1) model by
reproducing the monthly number of rainy days in the Blackwater River watershed located in
coastal Virginia. Two forecast-coherent methods in terms of mode and probability function are
applied to make predictions. The models’ performances are assessed using the Root Mean Square
Error and Index of Agreement criteria. The results reveal the similar performance of Y-W, CLS,
and MLE for estimating the parameters of data sets with larger sample size and values of α
close to unite root. Moreover, the results indicate that INAR(1) with different monthly Poisson
innovations is more appropriate for modelling and predicting seasonal count time series.

Keywords Blackwater River; conditional least square; count time series; forecast; maximum
likelihood estimation; rainfall; Yule–Walker

1 Introduction

Time series data with seasonal characteristics can be found in a variety of fields, such as economic,
healthcare, environment, and climate change. Many of them consist of counts, such as the
number of patients visit a hospital, the number of road accidents, the number of polio cases, etc.
The number of rainy days is one example of the count time series with seasonal characteristics
that have a profound influence on flooding. Flooding has affected the economy, agriculture,
tourism, and our daily life in diverse ways. Several reasons affect the magnitude of flooding,
such as sea-level rise (Wang et al., 2017), precipitation characteristics (Bracken , née Bull), and
seasonal variability, and extreme storms (Niroomandi et al., 2018). Changes in precipitation
patterns can be associated with severe environmental events. For instance, the reduction in
the number of rainy days can result in drought, while the upward trend in the frequency of
days with precipitation can increase the runoff coefficient and the risk of flooding events. The
critical impact of the aforementioned extreme events on human life emphasizes the importance
of modelling and predicting the number of rainy days.
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One of the most popular models for discrete time series data is First-order Non-negative
Integer-valued Autoregressive, INAR(1), defined as (Alosh and Alzaid, 2008):

Xt = α ◦Xt−1 + εt, (1)

where {Xt : t = 0,±1,±2, · · · } is a sequence of non-negative integer-valued random variables,
α ∈ [0, 1], {εt} is a sequence of non-negative integer-valued random variables having mean µ
and finite variance σ2, and ◦ is the binomial thinning operator defined as (Steutel and van Harn,
1979):

α ◦X =
X∑
i=0

Yi, (2)

where {Yi} is a sequence of independent and identically distributed (i.i.d) random variables inde-
pendent of {X} with a Bernoulli distribution B (1, α), such that P (Yi = 1) = 1−P (Yi = 0) = α.

The properties of the binomial thinning operator have been investigated by Weiß (2008).
Poisson INAR(1) has also been introduced by Alosh and Alzaid (2008). Its theoretical proper-
ties have been discussed by several researchers (Alosh and Alzaid, 2008; Freeland and McCabe,
2004b; McKenzie, 1988). Several methods for estimating parameters of Poisson INAR(1) have
been extensively discussed: Alosh and Alzaid (2008) introduced the Y-W, CLS, and MLE meth-
ods for estimating the parameters of the INAR(1) model, and Jung et al. (2005) examined
the performance of these estimators under equidispersion and overdispersion condition; Silva
and Oliveira (2004) used Whittle criterion for estimating parameters of the INAR process; the
higher-order moments and cumulate of INAR process have been discussed in many studies (Silva
and Oliveira, 2004, 2005); Keith Freeland and McCabe (2005) derived a corrected asymptotic
variance matrix of the Conditional Least Squares (CLS) estimators; Enciso-Mora et al. (2009)
discussed the problem of model selection for count time series; Bu et al. (2008) recommended
Maximum Likelihood Estimation (MLE) rather than CLS and Yule-Walker (Y-W) estimators,
and Bourguignon and Vasconcellos (2015) introduced parameter’s bias-reduced estimator.

In addition, several types of INAR(1) process have been introduced in literature: Ghodsi
et al. (2012) proposed a Spatial INAR model (SINAR (1,1)); Weiß (2012) investigated the proper-
ties of fully observed INAR(1) process; Pedeli et al. (2015) proposed Saddlepoint approximation
for the estimation of higher-order INAR models with Poisson and negative binomial innovations;
Mohammadpour et al. (2018) proposed an INAR model with Poisson-Lindley marginal distribu-
tion; and Shirozhan and Mohammadpour (2018) discussed an INAR model based on the mixing
Pegram and dependent Bernoulli thinning operator. The Bayesian approach has also been used
to analyse count data (Bisaglia and Canale, 2016; McCabe and Martin, 2005; Silva et al., 2009).

However, few studies of seasonal count time series have been reported in the literature.
Higuchi (1999) implemented quasi-periodic oscillation models for analyzing seasonal count time
series. Parametric and semiparametric methods for testing seasonality and trend in count time
series data were proposed by Hunsberger et al. (2002). Zhu and Joe (2006) extended the INAR
process to allow non-stationarity from trends and covariates. Also, two random coefficient models
for describing seasonality in INAR (p) models were presented by Zheng et al. (2006). Kim and
Park (2006) proposed a signed binomial thinning operator for modelling seasonal INAR process,
and Zhang et al. (2010) developed an extension of this new operator called signed generalized
power series thinning operator for handling non-stationary integer-valued time series. Tian et al.
(2020) discussed the limitation of using binomial thinning operator for modelling seasonal count
time series with over-dispersion and proposed a new seasonal geometric INAR process using the
negative binomial thinning operator with seasonal periods.
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Further, two different seasonal INAR processes have been introduced by Moriña et al. (2011)
and Bourguignon et al. (2016). The former model was established based on Poisson innovations
with different monthly means, while the latter model considered data as a first-order seasonal
process. The comparison between MLE, Y-W, and CLS estimators of the first-order seasonal
method was provided by Bourguignon et al. (2016). Moriña et al. (2011) estimated the param-
eters of INAR (2) with different monthly Poisson innovations using MLE and provided several
methods for forecasting seasonal integer-value time series. However, the MLE, Y-W, and CLS
estimators of INAR(1) with different monthly Poisson innovations model have not been intro-
duced in the literature. Moreover, the aforementioned models have not been conducted on the
same data to identify which model is more appropriate for describing the seasonal count time
series.

Furthermore, the prediction of the seasonal count data has rarely been discussed in the
literature. For count time series, an appropriate prediction model should be forecast-coherent and
produce non-negative integer values (Bisaglia and Gerolimetto, 2015). To satisfy this criterion,
Freeland and McCabe (2004a) used a conditional median, whereas, Vazifedan and Shitan (2012)
considered mode for producing coherent predictors. Bu and McCabe (2008) produced predictors
by considering the INAR process as a Markov Chain. Moriña et al. (2011) proposed short-term
and long-term methods for forecasting seasonal count time series.

The objectives of this study were to provide Y-W, CLS, and MLE for INAR(1) with different
monthly Poisson innovations and to evaluate their performances through a simulation study. This
paper is structured as follows. Two methods for modelling seasonal INAR(1) model are identified
in Section 2. Further, Section 2 introduces Y-W, CLS, and MLE for the first model. Section 3
provides simulation results and discusses the performances of estimation methods. Moreover,
Section 3 compares the performance of proposed models by reproducing the monthly number
of rainy days in the Blackwater River watershed located in east coastal Virginia. Remarks and
conclusions are provided in Section 4. All statistical modelling, simulation, estimating, and
forecasting was performed using R (R Core Team, 2018).

2 Materials and Methods

2.1 The Seasonal INAR Models

In the INAR(1) model identified by Equation (1), when {εt} is a sequence of Poisson errors with
mean and variance λ, then {Xt} has a Poisson distribution with parameter λ/(1− α). Here two
models for assessing seasonal INAR(1) process with Poisson errors are discussed. Model.1 has
been defined by Moriña et al. (2011) as,

Xt = α ◦Xt−1 + εt (λt) , (3)

where error terms {εt} are distributed by several Poisson distributions with parameterλt, where
s is the observed periodicity such that λt = λt+s, and,

P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0) = P (Xt = xt|Xt−1 = xt−1) .

The conditional probability function of a seasonal INAR (2) model has been introduced by
Moriña et al. (2011). The conditional probability function of Model.1 was computed similarly
as,

P (Xt|Xt−1) =

min(xt−1,xt)∑
k=0

(
xt−1
k

)
αk (1− α)xt−1−k

(
e−λtλxt−kt

(xt − k)!

)
. (4)
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The Autocorrelation Function (ACF) of the Poisson INAR(1) process is given as ρx (k) = αk, k =
0, 1, · · · (McKenzie, 1988).

Another seasonal Poisson INAR(1) process, Model.2, has been introduced by Bourguignon
et al. (2016) as,

Xt = α ◦Xt−s + εt, (5)

where s represents seasonal period and {εt} has a Poisson Distribution with parameter λ, such
that,

P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0) = P (Xt = xt|Xt−s = xt−s) ,

and,

P (Xt|Xt−s) =

min(xt−s,xt)∑
k=0

(
xt−s
k

)
αk (1− α)xt−s−k

(
e−λλxt−k

(xt − k)!

)
. (6)

The ACF of this model is given as,

ρx(k) =

{
αk/s if k is a multiple of s,
0 otherwise.

The main difference between Model.1 and Model.2 is that in the former one, observation at
time t is correlated to the observation at time t − 1 and elements which entered the system in
the interval (t− 1, t] with mean λt, while in the latter one, observation at time t is correlated to
observation at time t− s and elements which entered the system in the interval (t− s, t] with a
fixed mean of λ.

2.2 Estimation of Model Parameters

The Maximum Likelihood estimators of Model.1 have been introduced by Moriña et al. (2011).
The Y-W, CLS, and MLE of Model.2 and their asymptotic distributions have been discussed by
Bourguignon et al. (2016). Here, we introduce the Y-W and CLS estimators for Model.1.

2.2.1 The Yule-Walker Estimators

The Y-W estimator of the INAR(1) process has been introduced by Alosh and Alzaid (2008).
The Y-W estimators of Model.2 have been provided as (Bourguignon et al., 2016):

α̂ =

∑n−s
t=1

(
Xt − X̄

) (
Xt+s − X̄

)∑n
t=1

(
Xt − X̄

)2 ,

λ̂ = (1−α̂) X̄.

Here, the Y-W estimators of Model.1 are proposed in the following manner. The time
indicator in Equation (3) can be written as t = i + sτ , where s is the observed periodicity,
(i = 1, 2, · · · , s), (τ = 0, 1, · · · ,T), and T = b(n− 1)/sc, and b·c is the floor function. Then
Equation (3) can be represented as Xi+sτ = α ◦ Xi+sτ−1 + εi+sτ . By taking expectation, we
have,

E (Xi+sτ ) = E (α ◦Xi+sτ−1) + E (εi+sτ )

= αE (Xi+sτ−1) + λi+sτ ,
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because λi+sτ = λi then the Y-W estimator of λi is obtained as,

λ̂i =
1

Mi + 1

[∑Mi

τ=0
(Xi+sτ )− α

∑Mi

τ=0
(Xi+sτ−1)

]
, ∀i, (7)

where Mi = min (length (Xi+sτ ) , length (Xi+sτ−1)) and α can be estimated using the sample
auto-covariance function. The covariance at lag k is given as (Alosh and Alzaid, 2008):

γ (k) = cov (Xt−k, Xt)

= cov
(
Xt−k, α

k ◦Xt−k

)
+ cov

(
Xt−k,

∑k−1

j=0
αj ◦ εt−j

)
= αk var (Xt−k)

= αkγ (0) .

Then, the Y-W estimator of α is obtained as,

α̂ =

∑n
t=2

(
Xt − X̄

) (
Xt−1 − X̄

)∑n
t=1

(
Xt − X̄

)2 . (8)

2.2.2 Conditional Least Squares Estimators

The CLS estimators of parameters Model.2 have been proved as (Bourguignon et al., 2016),

α̂ =
(n− s)

∑n
t=s+1XtXt−s −

∑n
t=s+1Xt

∑n
t=s+1Xt−s

(n− s)
∑n

t=s+1X
2
t−s −

(∑n
t=s+1Xt−s

)2 ,

λ̂ =
1

n− s

(∑n

t=s+1
Xt − α̂

∑n

t=s+1
Xt−s

)
.

Here, the CLS estimators of Model.1 is proposed by considering E (Xt |Xt−1) = αXt−1 +λt and
minimizing L =

∑n
t=2 (Xt − α.Xt−1 − λt)2. Hence, the CLS of parameter λ is obtained as,

∂L

∂λt
= −2

∑n

t=2
(Xt − α.Xt−1 − λt)

=⇒
∑n

t=2
Xt − α

∑n

t=2
Xt−1 −

∑n

t=2
λt = 0.

Becauseλi+sτ = λi, then ∀i

λ̂i =
1

Mi + 1

[∑Mi

τ=0
(Xi+sτ )− α

∑Mi

τ=0
(Xi+sτ−1)

]
. (9)

Similarly, CLS of α can be obtained as,

∂L

∂α
= −2

∑n

t=2
(Xt − αXt−1 − λt)Xt−1

=⇒ ∂L

∂α
= −2

(∑n

t=2
XtXt−1 − α

∑n

t=2
X2
t−1 −

∑n

t=2
λtXt−1

)
,

where from Equation (9) we can conclude that λt = Miλi
n−1 , then,∑n

t=2
XtXt−1 − α

∑n

t=2
X2
t−1 −

∑n

t=2
Xt−1

∑s

i=1

(∑Mi

τ=0
(Xi+sτ )− α

∑Mi

τ=0
(Xi+sτ−1)

)
1

n− 1
= 0
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=⇒
∑n

t=2
XtXt−1 − α

∑n

t=2
X2
t−1 −

1

n− 1

∑n

t=2
Xt

∑n

t=2
Xt−1 + α

1

n− 1

(∑n

t=2
Xt−1

)2
= 0,

α̂ =

∑n
t=2XtXt−1 − 1

n−1
∑n

t=2Xt
∑n

t=2Xt−1∑n
t=2X

2
t−1 − 1

n−1 (
∑n

t=2Xt−1)
2 . (10)

2.2.3 Maximum Likelihood Estimators

Although several methods for estimating parameters of the INAR(1) process have been intro-
duced, conditional MLE has been reported to produce smaller biases and lower RMSE (Bour-
guignon et al., 2016; Bu et al., 2008). MLE of parameters (α, λt) are those values that maximize
the likelihood functions of Model.1, which is defined as

l (α, λt) =

n∑
t=1

log
[
P(α, λt) (Xt|Xt−1)

]
, (11)

where P(α, λt) (Xt|Xt−1) is the conditional probability of Xt conditioned to the previous observa-
tion, P(α, λt) (Xt = xt|Xt−1 = xt−1), which is defined by Equation (4). And MLE of parameters
(α, λ) can be computed by maximizing the likelihood function of Model.2 (Bourguignon et al.,
2016),

l (α, λ) =
n∑
t=s

log
[
P(α, λ) (Xt|Xt−s)

]
, (12)

where P(α, λ) (Xt|Xt−s) is the conditional probability of Xt given Xt−s defined by Equation (6).
Estimators’ Standard Errors (SE) were obtained using the inverse Hessian matrix and were used
to calculate 95% Confidence Intervals (CI) for the parameter estimators. The optimization of
Equation (11) and Equation (12) and Hessian matrix were implemented by using numerical
methods in R (R Core Team, 2018).

3 Results

3.1 Simulation

This section investigates the results of Monte Carlo simulation in this study. The properties of
different estimators for the parameters of Model.2 have been discussed in detail by Bourguignon
et al. (2016). Here, the performance of Y-W, CLS, and MLE for parameters of Model.1 is car-
ried out for different finite sample sizes n = (120, 360, 600), with s = 12, α = (0.2, 0.5, 0.8),
and two sets of monthly averages {λs = 8.5, 8.0, 7.0, 6.0, 5.5, 4.5, 5.0, 6.5, 7.0, 7.8, 8.5, 9} and
{λs = 12.5, 12, 11.0, 10.0, 9.5, 8.5, 9.0, 10.5, 11, 11.8, 12.5, 13}. The empirical results are pre-
sented by Table 1 to 3 and Figure 1 to 2. The obtained biases and RMSE were calculated over
1000 replications.

The performance of Y-W, CLS, and MLE for parameters of Model.2 has been discussed
(Bourguignon et al., 2016). According to Bourguignon et al. (2016), Y-W and CLS estimators
were susceptible to a process that was closer to non-stationary such that the bias and RMSE
increased by increasing α. They concluded that the performance of MLE was profoundly better
than Y-W and CLS estimators (Bourguignon et al., 2016).

Though, the simulation results of this study revealed that Y-W, CLS, and MLE had similar
performances for estimating parameters of Model.1 for simulated data with larger sample size
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Figure 1: Estimators’ biases produced by Y-W, CLS, and MLE methods.
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Figure 2: RMSE vs. SE of estimators by sample size.
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Table 1: Biases (RMSE) of estimators for α = 0.2.
n = 120 n = 360 n = 600

YW CLS MLE YW CLS MLE YW CLS MLE

α 0.2 0.144 0.132 0.016 0.155 0.150 0.007 0.155 0.154 0.004
(0.166) (0.155) (0.106) (0.162) (0.156) (0.055) (0.160) (0.158) (0.045)

λ1 8.5 −1.647 −0.511 −0.143 −1.740 −1.512 −0.078 −1.705 −1.630 −0.015
(2.077) (1.655) (1.620) (1.881) (1.670) (0.834) (1.789) (1.719) (0.633)

λ2 8.0 −0.785 −0.706 −0.161 −1.450 −1.375 −0.067 −1.561 −1.524 −0.031
(1.624) (1.566) (1.479) (1.644) (1.564) (0.761) (1.668) (1.631) (0.612)

λ3 7.0 −0.852 −0.735 −0.131 −1.396 −1.282 −0.055 −1.472 −1.455 −0.044
(1.668) (1.585) (1.354) (1.595) (1.484) (0.748) (1.583) (1.566) (0.562)

λ4 6.0 −0.822 −0.659 −0.175 −1.211 −1.220 −0.044 −1.319 −1.308 −0.049
(1.561) (1.453) (1.281) (1.416) (1.404) (0.652) (1.437) (1.419) (0.528)

λ5 5.5 −0.607 −0.519 −0.130 −1.066 −1.029 −0.076 −1.129 −1.124 −0.042
(1.429) (1.393) (1.143) (1.263) (1.227) (0.639) (1.238) (1.248) (0.480)

λ6 4.5 −0.615 −0.522 −0.138 −0.972 −0.930 −0.060 −1.020 −1.027 −0.030
(1.266) (1.253) (1.035) (1.154) (1.100) (0.564) (1.121) (1.132) (0.423)

λ7 5.0 −0.385 −0.345 −0.106 −0.772 −0.754 −0.051 −0.848 −0.829 −0.012
(1.150) (1.123) (1.000) (0.973) (0.933) (0.512) (0.961) (0.938) (0.416)

λ8 6.5 −0.209 −0.142 −0.116 −0.745 −0.716 −0.068 −0.852 −0.830 −0.027
(1.194) (1.158) (1.049) (0.979) (0.954) (0.596) (0.993) (0.965) (0.453)

λ9 7.0 −0.455 −0.363 −0.140 −0.997 −0.962 −0.038 −1.052 −1.073 −0.042
(1.268) (1.200) (1.198) (1.196) (1.154) (0.645) (1.170) (1.182) (0.508)

λ10 7.8 −0.399 −0.378 −0.162 −1.109 −1.037 −0.041 −1.205 −1.182 −0.064
(1.281) (1.308) (1.337) (1.303) (1.236) (0.721) (1.309) (1.290) (0.534)

λ11 8.5 −0.584 −0.510 −0.159 −1.204 −1.194 −0.060 −1.346 −1.307 −0.054
(1.371) (1.406) (1.413) (1.382) (1.375) (0.783) (1.449) (1.410) (0.585)

λ12 9.0 −0.769 −0.451 −0.186 −1.349 −1.300 −0.103 −1.458 −1.440 −0.033
(1.555) (1.471) (1.478) (1.543) (1.479) (0.794) (1.560) (1.540) (0.608)

α 0.2 0.091 0.076 0.017 0.103 0.101 0.003 0.108 0.105 0.004
(0.127) (0.112) (0.111) (0.116) (0.112) (0.055) (0.114) (0.111) (0.045)

λ1 12.5 −1.507 −0.447 −0.295 −1.676 −1.363 −0.069 −1.765 −1.532 −0.068
(1.286) (1.745) (2.115) (1.950) (1.665) (1.085) (1.916) (1.700) (0.842)

λ2 12.0 −0.329 −0.058 −0.236 −1.293 −1.198 −0.024 −1.499 −1.402 −0.101
(1.309) (1.918) (1.947) (1.681) (1.567) (1.051) (1.695) (1.602) (0.803)

λ3 11.0 −0.341 −0.087 −0.251 −1.239 −1.262 −0.044 −1.411 −1.412 −0.060
(1.301) (1.907) (1.993) (1.635) (1.605) (1.017) (1.629) (1.618) (0.778)

λ4 10.0 −0.312 −0.110 −0.216 −1.152 −1.142 −0.071 −1.329 −1.287 −0.096
(1.933) (1.819) (1.908) (1.594) (1.511) (0.921) (1.534) (1.490) (0.778)

λ5 9.5 −0.221 0.019 −0.234 −0.999 −0.993 −0.074 −1.215 −1.176 −0.030
(1.874) (1.873) (1.762) (1.421) (1.414) (0.895) (1.440) (1.393) (0.707)

λ6 8.5 −0.226 −0.078 −0.287 −0.998 −0.967 −0.021 −1.174 −1.117 −0.042
(1.758) (1.663) (1.705) (1.386) (1.330) (0.856) (1.368) (1.315) (0.652)

λ7 9.0 −0.137 0.124 −0.195 −0.832 −0.827 −0.036 −0.991 −0.972 −0.072
(1.721) (1.629) (1.581) (1.256) (1.192) (0.813) (1.198) (1.163) (0.623)

λ8 10.5 −0.013 0.229 −0.161 −0.803 −0.786 0.005 −1.005 −0.973 −0.044
(1.771) (1.726) (1.655) (1.268) (1.206) (0.833) (1.237) (1.187) (0.683)

λ9 11.0 0.028 0.147 −0.241 −0.981 −0.966 −0.068 −1.179 −1.160 −0.031
(1.717) (1.702) (1.840) (1.394) (1.338) (0.945) (1.382) (1.362) (0.728)

λ10 11.8 −0.165 0.178 −0.185 −1.037 −0.971 −0.069 −1.241 −1.219 −0.068
(1.690) (1.687) (1.930) (1.402) (1.326) (0.946) (1.425) (1.413) (0.770)

λ11 12.5 −0.073 0.198 −0.193 −1.117 −1.093 −0.066 −1.342 −1.280 −0.022
(1.710) (1.755) (1.986) (1.480) (1.429) (1.017) (1.519) (1.469) (0.807)

λ12 13.0 −0.160 0.106 −0.251 −1.176 −1.156 −0.066 −1.411 −1.426 −0.069
(1.873) (1.850) (2.110) (1.544) (1.508) (1.042) (1.589) (1.608) (0.814)
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Table 2: Biases (RMSE) of estimators for α = 0.5.
n = 120 n = 360 n = 600

YW CLS MLE YW CLS MLE YW CLS MLE

α 0.5 0.071 0.022 0.030 0.087 0.071 0.009 0.094 0.080 0.005
(0.095) (0.071) (0.070) (0.094) (0.080) (0.033) (0.098) (0.085) (0.032)

λ1 8.5 −1.239 −0.503 −0.544 −1.478 −1.263 −0.163 −1.563 −1.370 −0.091
(1.887) (1.555) (1.670) (1.680) (1.506) (0.917) (1.688) (1.503) (0.684)

λ2 8.0 −0.377 0.479 −0.551 −1.240 −0.930 −0.145 −1.438 −1.233 −0.076
(1.671) (1.721) (1.548) (1.497) (1.259) (0.886) (1.587) (1.402) (0.652)

λ3 7.0 −0.510 0.311 −0.512 −1.248 −0.954 −0.135 −1.428 −1.197 −0.079
(1.672) (1.679) (1.565) (1.520) (1.289) (0.827) (1.578) (1.378) (0.629)

λ4 6.0 −0.487 0.331 −0.466 −1.208 −0.903 −0.141 −1.314 −1.129 −0.072
(1.632) (1.635) (1.445) (1.467) (1.231) (0.767) (1.463) (1.317) (0.613)

λ5 5.5 −0.434 0.284 −0.480 −1.030 −0.821 −0.155 −1.213 −1.030 −0.068
(1.559) (1.639) (1.317) (1.295) (1.178) (0.752) (1.364) (1.220) (0.567)

λ6 4.5 −0.464 0.155 −0.358 −0.928 −0.763 −0.122 −1.094 −0.891 −0.049
(1.426) (1.452) (1.191) (1.186) (1.033) (0.646) (1.233) (1.052) (0.502)

λ7 5.0 −0.265 0.306 −0.338 −0.814 −0.607 −0.101 −0.920 −0.783 −0.051
(1.289) (1.371) (1.128) (1.073) (0.918) (0.623) (1.063) (0.948) (0.484)

λ8 6.5 −0.027 0.512 −0.274 −0.710 −0.534 −0.091 −0.883 −0.711 −0.046
(1.342) (1.488) (1.175) (1.001) (0.899) (0.684) (1.047) (0.904) (0.500)

λ9 7.0 −0.101 0.508 −0.336 −0.842 −0.590 −0.092 −0.978 −0.807 −0.055
(1.275) (1.480) (1.256) (1.104) (0.916) (0.722) (1.114) (0.986) (0.547)

λ10 7.8 −0.135 0.535 −0.394 −0.870 −0.712 −0.125 −1.036 −0.907 −0.081
(1.364) (1.547) (1.361) (1.133) (1.024) (0.788) (1.188) (1.071) (0.576)

λ11 8.5 −0.214 0.631 −0.468 −1.006 −0.761 −0.114 −1.153 −1.010 −0.039
(1.439) (1.590) (1.445) (1.267) (1.086) (0.837) (1.284) (1.175) (0.608)

λ12 9.0 −0.185 0.613 −0.437 −1.100 −0.874 −0.171 −1.294 −1.123 −0.094
(1.571) (1.756) (1.493) (1.355) (1.193) (0.895) (1.434) (1.285) (0.650)

α 0.5 0.039 −0.028 0.031 0.057 0.033 0.011 0.063 0.047 0.006
(0.080) (0.079) (0.070) (0.069) (0.053) (0.034) (0.070) (0.055) (0.032)

λ1 12.5 −0.973 0.302 −0.764 −1.441 −0.583 −0.260 −1.555 −1.199 −0.144
(2.193) (2.260) (2.263) (1.839) (1.479) (1.206) (1.786) (1.484) (0.916)

λ2 12.0 0.357 0.055 −0.769 −1.014 −0.470 −0.290 −1.344 −0.921 −0.174
(2.243) (2.271) (2.065) (1.593) (1.382) (1.188) (1.650) (1.313) (0.940)

λ3 11.0 0.181 0.042 −0.684 −1.053 −0.404 −0.279 −1.339 −0.931 −0.194
(2.380) (2.421) (2.031) (1.624) (1.338) (1.158) (1.643) (1.337) (0.910)

λ4 10.0 0.064 −0.122 −0.725 −1.021 −0.445 −0.259 −1.279 −0.896 −0.161
(2.337) (2.373) (1.983) (1.577) (1.333) (1.126) (1.581) (1.311) (0.840)

λ5 9.5 0.150 0.011 −0.635 −0.916 −0.444 −0.293 −1.221 −0.842 −0.160
(2.370) (2.329) (1.905) (1.504) (1.323) (1.086) (1.526) (1.230) (0.834)

λ6 8.5 0.076 0.006 −0.612 −0.890 −0.353 −0.230 −1.128 −0.786 −0.109
(2.184) (2.105) (1.776) (1.444) (1.234) (0.982) (1.409) (1.174) (0.766)

λ7 9.0 0.240 0.025 −0.562 −0.807 −0.330 −0.257 −0.984 −0.693 −0.117
(2.082) (2.097) (1.745) (1.316) (1.149) (0.943) (1.301) (1.085) (0.761)

λ8 10.5 0.355 0.329 −0.635 −0.719 −0.280 −0.209 −0.938 −0.650 −0.119
(2.157) (2.751) (1.772) (1.277) (1.163) (1.001) (1.270) (1.054) (0.752)

λ9 11.0 0.377 0.235 −0.563 −0.800 −0.307 −0.213 −1.035 −0.711 −0.119
(2.007) (2.897) (1.829) (1.320) (1.167) (1.050) (1.317) (1.072) (0.798)

λ10 11.8 0.391 0.248 −0.670 −0.843 −0.310 −0.226 −1.081 −0.764 −0.119
(2.063) (2.871) (1.910) (1.396) (1.111) (1.047) (1.345) (1.126) (0.868)

λ11 12.5 0.359 0.300 −0.705 −0.907 −0.320 −0.236 −1.155 −0.804 −0.124
(2.022) (2.933) (1.998) (1.382) (1.173) (1.132) (1.423) (1.164) (0.859)

λ12 13.0 0.361 0.194 −0.754 −0.955 −0.380 −0.224 −1.262 −0.852 −0.162
(2.249) (3.072) (2.109) (1.497) (1.273) (1.236) (1.526) (1.224) (0.930)
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Table 3: Biases (RMSE) of estimators for α = 0.8.
n = 120 n = 360 n = 600

YW CLS MLE YW CLS MLE YW CLS MLE

α 0.8 −0.009 −0.003 0.015 0.004 0.007 0.004 0.007 0.008 0.003
(0.042) (0.040) (0.035) (0.025) (0.025) (0.004) (0.020) (0.020) (0.003)

λ1 8.5 0.410 0.076 −0.530 −0.172 −0.063 −0.145 −0.261 −0.298 −0.109
(1.813) (1.839) (1.600) (1.106) (1.085) (0.914) (0.911) (0.898) (0.665)

λ2 8.0 1.179 1.002 −0.521 0.108 −0.005 −0.123 −0.101 −0.114 −0.106
(2.350) (2.247) (1.435) (1.136) (1.143) (0.823) (0.908) (0.908) (0.669)

λ3 7.0 1.105 0.872 −0.512 0.062 −0.041 −0.131 −0.154 −0.148 −0.116
(2.317) (2.234) (1.476) (1.129) (1.133) (0.832) (0.943) (0.911) (0.647)

λ4 6.0 0.993 0.723 −0.487 0.030 −0.089 −0.165 −0.121 −0.179 −0.082
(2.286) (2.178) (1.443) (1.161) (1.129) (0.798) (0.884) (0.864) (0.643)

λ5 5.5 1.015 0.645 −0.522 0.030 −0.030 −0.127 −0.136 −0.170 −0.125
(2.242) (2.030) (1.358) (1.130) (1.083) (0.788) (0.904) (0.867) (0.633)

λ6 4.5 0.823 0.584 −0.467 0.006 −0.083 −0.099 −0.140 −0.192 −0.085
(2.071) (1.957) (1.330) (1.073) (1.017) (0.736) (0.824) (0.843) (0.568)

λ7 5.0 0.912 0.648 −0.457 0.056 −0.040 −0.159 −0.110 −0.153 −0.099
(2.043) (1.848) (1.283) (1.020) (0.999) (0.726) (0.773) (0.816) (0.557)

λ8 6.5 1.023 0.791 −0.446 0.070 0.012 −0.102 −0.090 −0.085 −0.073
(2.081) (1.932) (1.315) (1.004) (0.965) (0.747) (0.813) (0.782) (0.591)

λ9 7.0 1.077 0.788 −0.477 0.150 0.045 −0.141 −0.052 −0.103 −0.051
(2.133) (1.894) (1.390) (1.027) (0.992) (0.744) (0.767) (0.773) (0.595)

λ10 7.8 1.088 0.905 −0.486 0.097 0.028 −0.121 −0.071 −0.103 −0.095
(2.112) (2.007) (1.435) (1.003) (1.020) (0.770) (0.800) (0.800) (0.616)

λ11 8.5 1.201 1.040 −0.501 0.135 0.040 −0.132 −0.057 −0.078 −0.103
(2.266) (2.094) (1.500) (1.075) (1.022) (0.827) (0.823) (0.798) (0.645)

λ12 9.0 1.258 1.040 −0.559 0.176 0.070 −0.143 −0.061 −0.103 −0.096
(2.332) (2.153) (1.500) (1.104) (1.097) (0.843) (0.817) (0.881) (0.660)

α 0.8 −0.010 −0.002 0.012 0.002 0.002 0.004 0.003 0.003 0.003
(0.039) (0.037) (0.034) (0.025) (0.026) (0.004) (0.020) (0.020) (0.003)

λ1 12.5 0.547 1.143 −0.665 −0.064 0.141 −0.247 −0.222 −0.226 −0.132
(2.576) (2.527) (2.087) (1.621) (1.669) (1.204) (1.286) (1.319) (0.903)

λ2 12.0 1.883 1.353 −0.616 0.359 0.293 −0.283 0.060 0.075 −0.157
(3.315) (3.057) (1.953) (1.772) (1.736) (1.220) (1.309) (1.310) (0.915)

λ3 11.0 1.826 1.360 −0.655 0.334 0.244 −0.219 0.007 0.021 −0.154
(3.349) (3.126) (1.979) (1.687) (1.749) (1.143) (1.301) (1.329) (0.894)

λ4 1.0.0 1.649 1.235 −0.645 0.248 0.218 −0.255 −0.030 0.023 −0.133
(3.181) (3.004) (1.930) (1.719) (1.804) (1.142) (1.313) (1.349) (0.888)

λ5 9.5 1.607 1.172 −0.629 0.242 0.259 −0.190 −0.031 0.020 −0.155
(3.156) (2.974) (1.980) (1.684) (1.735) (1.114) (1.256) (1.346) (0.889)

λ6 8.5 1.502 1.071 −0.554 0.150 0.221 −0.227 −0.006 0.003 −0.167
(3.061) (2.805) (1.883) (1.592) (1.692) (1.058) (1.222) (1.239) (0.837)

λ7 9.0 1.603 1.006 −0.536 0.226 0.192 −0.208 −0.003 0.051 −0.187
(3.032) (2.729) (1.797) (1.586) (1.607) (1.086) (1.210) (1.253) (0.825)

λ8 10.5 1.720 1.232 −0.579 0.213 0.274 −0.262 0.050 0.039 −0.112
(3.121) (1.229) (1.824) (1.599) (1.233) (1.088) (1.184) (1.207) (0.824)

λ9 11.0 1.779 1.353 −0.542 0.290 0.312 −0.214 0.054 0.106 −0.153
(3.172) (1.377) (1.846) (1.570) (1.409) (1.044) (1.161) (1.194) (0.830)

λ10 11.8 1.897 1.413 −0.627 0.283 0.296 −0.278 0.062 0.101 −0.106
(3.254) (1.400) (1.970) (1.561) (1.423) (1.169) (1.216) (1.187) (0.840)

λ11 12.5 2.002 1.476 −0.576 0.365 0.280 −0.214 0.076 0.100 −0.150
(3.308) (1.537) (2.067) (1.606) (1.557) (1.112) (1.186) (1.236) (0.894)

λ12 13.0 2.017 1.513 −0.657 0.348 0.321 −0.248 0.114 0.112 −0.169
(3.356) (1.571) (2.037) (1.658) (1.635) (1.168) (1.278) (1.279) (0.943)
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Table 4: Summary of the monthly number of rainy days, Blackwater River, Jan 1980- Dec 2014.
Total Mean S.d. Min 1st Q 2nd Q 3rd Q Max

6.9 3.0 0.0 5.0 7.0 9.0 17.0

Monthly Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Mean 7.8 6.9 8.5 7.2 7.7 6.3 7.3 6.5 5.7 5.9 5.5 7.4
S.d. 2.9 2.5 3.2 2.7 3.2 3.3 3.4 2.4 3.3 2.9 2.3 2.8

and α closer to the unite root (Figure 1). Moreover, despite the sample size, all estimators
produced comparable estimators of α close to the unit root (Table 1 to 3).

For α = (0.2, 0.5), the performance of Y-W and CLS estimators improved when the sample
size decreased. Also, when α = 0.5, the Y-W and CLS were preferred over MLE for estimating
parameters of small-sized simulated data (Figure 1). Although MLE produced smaller RMSE by
increasing the sample size, the RMSE obtained by Y-W, CLS, and MLE were similar for small
values of α and small-sized simulated data (Figure 2).

In general, the RMSE and standard error (SE) of estimators were almost equal, which
is evidence of small bias values generated by the estimation methods proposed in this study
(Figure 2). Going by RMSE and bias values, Y-W, CLS, and MLE had comparable performances
for simulated datasets with larger sample sizes and α values close to the unite root. Still, since
MLE uses the full information of the distribution, it was more robust to the changes in the values
of α and n.

3.2 Real Data

The Blackwater River is located near south-eastern Virginia. It starts to flow from its source
located in Prince George Country, the city of Petersburg, Virginia, for about 105 miles (170 km)
through the Inner Coastal Plain region of Virginia. The Blackwater River joins the Nottoway
River to form the Chowan River, which empties into Albemarle Sound. Since the Blackwater
River drains an extensive area of southern Virginia, intense flooding occasionally happens in
several regions once heavy rainfall occurs all over the area. Important counties that have been
affected by flooding are Zuni and Franklin city. As the river’s channel is limited to those areas,
flood stages can occur quickly.

In this study, the precipitation data of four stations that are closed to the Blackwater River
were used, namely: Holland, Hopewell, Stony Creek, and Suffolk Lake Kilby. Here a rainy day
was defined as a day with precipitation more than 0 mm. The monthly numbers of rainy days were
computed from daily data collected from the National Oceanic and Atmospheric Administration
website (NOAA, 2018).

In this section, both Model.1 and Model.2 are conducted on the monthly number of rainy
days in Blackwater River Franklin, VA, from January 1980 to December 2014.

Figure 3 illustrates the time series plot of data and boxplot of rainy days per month, and
Table 4 represents the mean, standard deviation (s.d.), and five-number summary of data (Shitan
and Vazifedan, 2011). The sample ACF and PACF of data were close to the theoretical ACF and
PACF, such that ACF values decayed slowly, while PACF values were not significantly different
from zero after lag one. Moreover, ACF and Partial ACF (PACF) plots of residuals indicate that
a first-order seasonal model is a valid model for this data, and higher-order correlation does not
exist between observations (Figure 4).
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Figure 3: (A) Time series plot of the monthly number of rainy days, Jan 1980 to Dec 2014; (B)
Distribution of the number of rainy days per month.
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Table 5: Maximum likelihood estimates of parameters for Model.1 and Model.2.
Parameter Estimate 95% CI

Model.1 α 0.14 (0.06, 0.21)
λ1 6.6 (5.55, 7.76)
λ2 5.9 (4.82, 6.92)
λ3 7.5 (6.44, 8.64)
λ4 6.1 (5.00, 7.17)
λ5 6.7 (5.58, 7.73)
λ6 5.3 (4.26, 6.26)
λ7 6.5 (5.48, 7.48)
λ8 5.4 (4.44, 6.44)
λ9 4.9 (3.91, 5.76)
λ10 5.2 (4.30, 6.09)
λ11 4.7 (3.80, 5.60)
λ12 6.7 (5.66, 7.63)

Model.2 α 0.07 (−0.01, 0.15)
λ 6.5 (5.91, 7.12)

Maximum likelihood estimators of parameters of Model.1 and Model.2 were obtained using
Equation (11) and Equation (12) (Table 5). The estimated covariance matrix of parameters of
Model.1 and Model.2, using the inverse Hessian matrix, was calculated as Σ̂1 and Σ̂2, respectively,

Σ̂1 =



0.002 0.011 0.012 0.011 0.013 0.012 0.012 0.009 0.011 0.010 0.008 0.009 0.009
0.011 0.304 0.088 0.080 0.093 0.084 0.084 0.067 0.082 0.073 0.060 0.068 0.062
0.012 0.088 0.287 0.084 0.099 0.089 0.089 0.071 0.087 0.077 0.063 0.072 0.065
0.011 0.080 0.084 0.315 0.089 0.080 0.081 0.064 0.079 0.069 0.057 0.065 0.059
0.013 0.093 0.099 0.089 0.306 0.094 0.094 0.075 0.092 0.081 0.067 0.076 0.069
0.012 0.084 0.089 0.080 0.094 0.299 0.085 0.067 0.083 0.073 0.060 0.068 0.062
0.012 0.084 0.089 0.081 0.094 0.085 0.261 0.068 0.083 0.073 0.061 0.069 0.062
0.009 0.067 0.071 0.064 0.075 0.067 0.068 0.259 0.066 0.058 0.048 0.055 0.050
0.011 0.082 0.087 0.079 0.092 0.083 0.083 0.066 0.261 0.072 0.059 0.067 0.061
0.010 0.073 0.077 0.069 0.081 0.073 0.073 0.058 0.072 0.223 0.052 0.059 0.054
0.008 0.060 0.063 0.057 0.067 0.060 0.061 0.048 0.059 0.052 0.209 0.049 0.044
0.009 0.068 0.072 0.065 0.076 0.068 0.069 0.055 0.067 0.059 0.049 0.210 0.050
0.009 0.062 0.065 0.059 0.069 0.062 0.062 0.050 0.061 0.054 0.044 0.050 0.254


,

and

Σ̂2 =

(
0.002 0.011
0.011 0.096

)
.

Diagonal elements of the above matrices, i.e., SE, were used to compute 95% CI. Calculated
CIs indicated that all the parameters are significantly different from zero, except α in Model.2.
Moreover, Table 5 shows that

{
λ̂t : t = 1, 2, · · · , 12

}
is a good estimator of the average number

of rainy days per months, while λ̂ is a good estimator of the overall average of the number of
rainy days.
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3.3 Model Prediction

In this paper, two different approaches were considered for forecasting the monthly number
of precipitation days: using the mode of simulated point predictors (Vazifedan and Shitan,
2012), and using conditional probability function (Bu and McCabe, 2008). In the first approach,
1000 one-step-ahead forecast values were generated for Xt given Xt−1 using Equation (3) and
Equation (5), and the mode of them was taken as the final predictor. This process was repeated
to obtain the h-step ahead predicted value. In the second approach, time series model was
considered as a Markov Chain such that at time t, the probabilities of all values that can be
observed at time t+1 were calculated using Equation (4) and Equation (6). Then the value with
maximum probability was considered as the predicted value. Note that the number of rainy days
in a month is a finite number between 0 and 28-31. However, it has been suggested that even
when the number of possible values is infinite, there is a large positive integer M such that the
probability of observing more than M values is minimal (Bu and McCabe, 2008).

In this research, forecasted values of 12 steps ahead, starting from Jan 2014, were calculated
by implementing the above approaches in both Model.1 and Model.2. Several measures have
been introduced to assess the suitability of competing models. In this study, Index of Agreement
(I.A.) (Jorquera et al., 1998) and RMSE were used to evaluate models’ performance and accuracy.
The model with an I.A. value closer to one and a smaller RMSE is the preferred model, where:

I.A. = 1−

n∑
t=1

(xt − x̂t)2

n∑
t=1

(|xt − x̂t|+ |x̂t − x̄t|)2
,

RMSE =

√√√√√ n∑
t=1

(xt − x̂t)2

n
.

where x̄t is the average of observations and x̂t′s are predictors.
Table 6 represents the observed values, predicted values, calculated I.A., and RMSE. In

general, Model.1 was more appropriate for modelling rainy days since it produced smaller RMSE
and generated I.A. values closer to 1. According to the results, the RMSE values were calculated
as 10.54 and 12.96 for Model.1, whereas 21.73 and 20.25 for Model.2 using mode and probability
function, respectively. Further, the I.A. values for Model.1 were reported as 0.55 and 0.29, while
the I.A. for Model.2 were 0.10 and 0.16 using mode and probability function, respectively. By
comparing RMSE and I.A. values, it can be concluded that modelling and forecasting count
time series by implementing Model.1 and using mode is more appropriate amongst the models
considered in this paper.

Furthermore, Figure 5 illustrates the forecast plots of the monthly number of rainy days.
Figure 6 shows the histogram of forecasted values by conducting Model.1 and implementing
mode. The comparison between the reported results in Table 6 and calculated mean and standard
deviation in Figure 6 suggested that estimating the average number of rainy days in a month
using mode produced smaller bias than using conditional probability function.
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Figure 5: Forecast plots using (A) Model.1 and (B) Model.2.
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Figure 6: Histogram of monthly forecasted values using mode for Model.1.
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Table 6: Forecasted values.
Month Observation Model.1 Model.2

Mode Probability function Mode Probability Function

Jan 4 7 7 9 10
Feb 4 6 7 11 10
Mar 13 9 8 9 10
Apr 6 8 6 10 10
May 3 7 8 10 10
Jun 7 6 6 11 10
Jul 1 7 8 12 10
Aug 6 6 6 10 10
Sep 7 5 5 10 10
Oct 3 5 6 10 10
Nov 4 5 5 9 10
Dec 2 6 8 11 10

RMSE 10.536 12.961 21.726 20.248
I.A. 0.548 0.293 0.102 0.159

4 Conclusions

In this study, two different seasonal Poisson INAR(1) models were assessed for modelling and
forecasting seasonal count time series. The MLE, Y-W, and CLS estimators of the INAR(1)
model with different monthly Poisson innovations were introduced.

The performances of Y-W, CLS, and MLE were evaluated, and it was revealed that all
estimation methods produced comparable estimations for datasets with larger sample sizes and
values of α close to the unite root. Although MLE produced smaller biases and RMSE for
smaller values of α, Y-W and CLS had similar performances as MLE for small-sized simulated
data. Furthermore, both seasonal models were conducted on the monthly rainy days, and two
forecast-coherent approaches were implemented to produce integer-valued predictors. The RMSE
and I.A. criteria were calculated to evaluate models. According to the results, considering mode
as a forecasted value in the INAR(1) model with different monthly Poisson innovations was a
better choice for predicting seasonal non-negative integer-valued time series with the Poisson
distribution.
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