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Abstract

Researchers and practitioners of many areas of knowledge frequently struggle with missing data.
Missing data is a problem because almost all standard statistical methods assume that the
information is complete. Consequently, missing value imputation offers a solution to this problem.
The main contribution of this paper lies on the development of a random forest-based imputation
method (TI-FS) that can handle any type of data, including high-dimensional data with non-
linear complex interactions. The premise behind the proposed scheme is that a variable can be
imputed considering only those variables that are related to it using feature selection. This work
compares the performance of the proposed scheme with other two imputation methods commonly
used in literature: KNN and missForest. The results suggest that the proposed method can be
useful in complex scenarios with categorical variables and a high volume of missing values, while
reducing the amount of variables used and their corresponding preliminary imputations.
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1 Introduction

Researchers and practitioners in many areas of knowledge frequently struggle with missing data.
Missing data arises in almost all statistical analyses for reasons, such as data collection problems,
equipment failures, errors in manual data entry or in cases of non-response items in survey studies
with persons (Rogier et al., 2006; Gelman and Hill, 2006). Work performed by Wood et al. (2004)
reveals that 89% of the clinical experiments in leading medical journals exhibit missing values.
Unfortunately, missing data is a problem because almost all standard statistical methods assume
that the information is complete. As a result, the analysis of the data gets complicated, efficiency
is lost, statistical power decreases, and parameter estimates may be biased due to the differences
between the complete and missing data (Kaiser, 2014).

Researchers often appeal to ad hoc methods, such as case deletion or missing value impu-
tation, to force an incomplete data set into a data set with no missing values (Schafer, 1997).
The consequence of case deletion is that potentially valuable data is discarded, which is usually
worse than having missing values. Missing value imputation (MVI), on the other hand, refers to
replacing the missing data with acceptable values, by using the data in the recorded variables
(Andridge and Little, 2010). The approach to MVI schemes is typically straightforward. You
either delete all instances with at least one missing value; or you generate preliminary imputa-
tions for all independent variables, except for the one whose missing value you want to impute.
The same missing value is imputed multiple times until it no longer changes as stipulated by a
convergence criteria, which can be in terms of the number of iterations or in terms of the change
in the value of the missing value.
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When the missing cases are a small part of the data set (e.g. 5% or less) case deletion could
be a reasonable solution to the missing data problem. But, when dealing with high number of
missing data, discarding them will lead to losing large amounts of information; without mention-
ing that the data collection process often requires large amounts of time and money. This is the
case when conducting studies that involve clinical trials, for instance, a new cancer treatment
where trials require a hefty monetary investment and are only conducted after getting the ap-
proval from the health regulatory agency (Sertkaya et al., 2014). On top of that, it will also take,
on average, five years to collect the necessary data to perform robust analyses. Many things can
lead to missing data during the process (e.g. patients dropping out from the study, problems
with data collection) and, thus, knowing the substantial amount of resources it takes to collect
it, discarding cases is typically the least attractive option. This is why MVI is a growing area
of research, specially among researchers working on experiments that involve high-dimensional
data sets.

Literature on mixed-type data imputation is somewhat limited. Most imputation methods
are restricted to only one type of variable. For example, stochastic regression imputation (SRI),
is used for categorical data exclusively (Sulis and Porcu, 2008), whereas regression imputation,
is only used on continuous data. The options fall even shorter when complex mixed-type data
comes into play. The first attempt to overcome this gap involved maximum likelihood estimation,
combining a multivariate normal model with a Poisson/multinomial model to impute continuous
and categorical variables, respectively (Little and Schluchter, 1985). During the last decade,
other methods based on decision trees (Stekhoven and Bülmann, 2012) and nearest neighbors
(Kowarik and Templ, 2016) have been proposed. Yet, there still a need for new and enhanced
techniques that can satisfy the ongoing necessities of big data.

This paper describes TI-FS (tree-based missing value imputation using feature selection), a
new imputation method based on random forests (Breiman, 2001), that exploits the relationships
among variables by means of feature selection. The premise behind the proposed scheme is that
a variable can be imputed taking into account only those variables that are related to it, whether
this relationship is linear or not. Using feature selection for this approach can be advantageous
because it greatly reduces the number of preliminary imputations required which, in turn, greatly
minimizes the need to contaminate the original data set with what are often overly simplified
guesses (e.g., mean or mode, depending on the type of variable under consideration). Besides,
depending on the form of the model chosen to generate predictions for the missing values, using
feature selection can greatly assist in generating more robust missing values estimates because
this pre-processing step can alleviate issues surrounding unreliable parameter estimates in the
presence of multicollinearity and, consequently, abrupt changes in missing value estimates even
with mild changes in the data used to train the prediction model. In general, the proposed
scheme allows the optimization approach to move towards simpler, local convergence criteria
than what is used in similar tree-based approaches and reduce the computational cost of the
MVI scheme.

This work is an extension of Dávila and Rosado (2017), a previously published conference
proceedings. In Dávila and Rosado (2017) a feature selection method was chosen arbitrarily and
used in the proposed imputation scheme, whereas, in this paper a more exhaustive evaluation of
various feature selection methods was performed in order to select the best option. Also, Rosado
et al. did not mention the parameter tuning of the former TI-FS. Since then, numerous changes
were made to the parameters of the method, new stopping rules were adopted, and more than
twice the amount of data sets were considered in both the feature selection stage as well as in
the evaluation of the imputation scheme.
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The organization of this paper is as follows: Section 2 reviews some of the best MVI schemes
and feature selection methods in the literature and describes how the TI-FS compares and
contrasts to these methods. Sections 3 and 4 provide the conceptual framework and development
of the proposed imputation scheme. Next, the performance of TI-FS was compared against K-
nearest neighbors (Kowarik and Templ, 2016) and missForest (Stekhoven and Bülmann, 2012) in
Section 5 using simulated and publicly available data sets. Lastly, the advantages and limitations
of TI-FS are discussed and some conclusion remarks are given in Section 6.

2 Literature Review

2.1 Missing Value Imputation

A wide array of imputation methods have been proposed in literature to deal with the problem of
missing data. They encompass anything from simple, like univariate mean/mode imputation to
more complex multivariate schemes that look for relationships among covariates. Many studies
have compared the performance of imputation methods but, unfortunately, regardless of the
simplicity or complexity of an imputation method; its execution will always depend on the
fitness between the data set, imputation method, and characteristics of the missing data (Sim
et al., 2015).

One of the most popular and, by far, the simplest is mean and mode substitution. In this
method, the missing values of a numerical variable are replaced by the mean of the observed
cases, while missing categorical values are replaced with the covariate’s mode (Silva et al., 2011).
Mean/mode imputation is easy-to-use, but it is depicted as inferior since it distorts the covariance
structure of the data, leading to biased estimates (Rogier et al., 2006).

Another commonly used method is regression imputation. Here, the missing values are pre-
dicted from a linear regression equation using the information from the complete cases (Enders,
2010). That is, the variable with missing values becomes the response and the remaining variables
are used to predict this missing values. If the relationship between the variable being imputed
and the remaining variables is linear; then, the method will work reasonably well. Otherwise, it
will fail to understand the relationship among variables. Additionally, regression imputation also
produces biased results, overestimating the correlations between covariates, and it only works on
numerical data.

Multiple imputation (MI) has also been proven effective in MVI. A popular approach used to
implementing MI is regression modeling, also known as multiple imputation by chain equations
(MICE) (Burgette and Reiter, 2010). MICE imputes the missing values given a conditional
model per covariate. The problem with MICE comes when specifying the conditional models
for large amounts of covariates with missing values, even more so, when complex interactions
exist between them. Identifying these models could be an uneasy task since it is hard to adjust
a model that will fit the information of the missing data and simultaneously have convergence
with the estimates (López, 2005). MI compares to the proposed method in that they both
perform numerous imputations of the missing values in the data. Also, in that they are both
conditional approaches, but the proposed method is only conditional on those variables that have
a statistically significant relationship with the variable under consideration.

A more recent approach to MVI isK-nearest neighbors (KNN). It is a non-parametric method
that imputes missing data based on the outcome of the K (a user-defined constant) observations
closest to the missing value. Missing data are replaced with observed values from donors with
similar characteristics (Stekhoven and Bülmann, 2012). Different distance measures are used to
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determine the similarity between the missing values and the observed data. The most popular
distance measure is the Euclidean distance, which is given by the root of squared differences
between a pair of observations. Other distances commonly used are: Manhattan, Minkowski,
Supremum Singh et al. (2013) and Gower Gower (1971).

KNN has proven to be effective when analyzing mixed-type data at different missing ratios
(Yeşilova et al., 2010). It is also an attractive approach due to its simplicity and effectiveness in
a variety of imputation problems (Liao et al., 2014). However, one of the drawbacks of the KNN
method is that it only imputes a missing value based on its KNN, which makes it a conditional
approach (López, 2005). Also, it is not clear which value of K should be used. KNN and
TI-FS are both conditional approaches. In KNN, donors represent observations with similar
characteristics, whereas in TI-FS, a random forest is trained only on those covariates selected by
the FS method to have a statistically significant difference with the covariate being imputed.

Tree-based MVI techniques are also widely used in mixed-type data sets with complex
interactions between variables. Decision trees are non-parametric supervised methods produced
by algorithms that identify various ways of splitting a data set into branch-like segments. Their
goal is to create a model that predicts the value of a target variable by learning simple decision
rules inferred from the data (Pantanowitz and Marwala, 2009). Classification and regression trees
(CART) analysis is a technique that uses trees for predicting both continuous and categorical
variables, where a tree is built by recursively partitioning the data set into non-overlapping
regions (branches) and, then, the tree is used to predict the missing value for the covariate being
treated as the dependent variable (Breiman et al., 1984).

A Random forest (RF) is an ensemble of decision trees that performs, both, classification
and regression by drawing M bootstrap samples from the original training data, using each of
these M samples to build M trees within the ensemble. They can be easily adapted to the task
of MVI (Breiman, 2001). In fact, RF can work around missing values without imputing them
because they can decide what to do on a split based on the best surrogate for the variable under
consideration. For the purpose of this work,RF’ variable importance scores (VIS) are an added
bonus. A VIS measures how much the prediction error increases when out-of-bag (OOB) data
for that variable is permuted while all others are left unchanged (Liaw and Wiener, 2002). For
a single decision tree, the measure of variable importance proposed by Breiman et al. (1984) is
given:

V I(xj , T ) =
∑
t∈T

∆I(xj , t), (1)

where ∆I(xj , t) = I(t) − pLI(tL) − pRI(tR) is the decrease in impurity due to an actual or
potential (surrogate) split on numerical predictor xi at a node t of the optimally pruned tree, T
and pL(pR) denotes the proportion of cases assigned to the left (right) child node of t. Note that
Equation (1) refers to a single decision tree. For ensembles of M trees, the VIS of a predictor is
obtained by averaging over all its VIS across the ensemble. The process of averaging across all
VIS in the ensembles has a stabilizing effect that leads to a more robust estimator of variable
importance.

The rfImpute algorithm described in Pantanowitz and Marwala (2009) is a blend of KNN
and RF approaches. For continuous covariates, the imputed value is the weighted average of the
non-missing observations, using proximities as weights. For categorical predictors, the imputed
value is the category with the largest average proximity.

The method in literature that most closely resembles the proposed approach is the iterative
RF imputation scheme known as missForest . In a similar approach to the proposed method,
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missForest can be used with any type of data: Numerical, categorical, or even mixed-type data
(Stekhoven and Bülmann, 2012). The main difference between this approach and the proposed
method is how the RF is built on the observed data. TI-FS only have available statistically
significant covariates to build the RF. Meanwhile, missForest have all predictor variables in
the data set, regardless of the dimensionality of the problem and regardless of whether these
predictors have any relationship with the predictor being imputed. As a result, the TI-FS can
be used as an approximation to missForest in scenarios where the computational complexity of
the imputation problem becomes an issue and the relationships among predictors are known or
can be assessed a priori.

2.2 Feature Selection

The selection of relevant features or feature selection (FS) is a topic that has grown in popularity
in recent years with the increase of complex, high-dimensional data. The presence of redundant
or irrelevant features constitutes a problem since it can degrade the performance of learners in
terms of speed and predictive accuracy.

Many algorithms have been developed to measure how useful a variable is in a data set.
The objective of FS is to select a small subset of features from the original data that will
provide the most significant information from a target (Kira and Rendell, 1992). Therefore, FS
allows the analyst to better understand the data, reduces computational requirements, improves
predictor performance, and facilitates to identify which features are relevant to a specific problem
(Chandrashekar and Sahin, 2014).

Filter selection methods are the most common approach for FS. They apply variable
ranking techniques as the criterion for variable selection (Shardlow, 2008). Correlation-based
feature selection (CFS) is a filter method that uses a correlation-based heuristic to evaluate a
subset of features (Hall, 2000).

ReliefF is another commonly used filter method, extended from the original Relief (Kira
and Rendell, 1992), that can deal with multi-class problems and incomplete data. It weights the
features based how well their values distinguish between instances that are near to each other
(Robnik-Sikonja and Kononenko, 2003).

While the greedy nature of filter approaches does not consider the interaction with the learner
or even the interaction among the features (Saeys et al., 2007), correlation-based algorithms
are significantly faster than other selection methods and have high prediction accuracy when
analyzing high dimensional data (Lei and Liu, 2003; Doshi and Chaturvedi, 2014). ReliefF
algorithms are also good in detecting conditional dependencies, thus, they are robust and noise-
tolerant (Robnik-Sikonja and Kononenko, 2003).

The wrapper approach uses the prediction performance of a given induction algorithm/
learner to assess the usefulness of subsets of features in the data (Guyon and Elisseeff, 2003).
Here, FS is “wrapped" around the learner and does an exhaustive search for variables in the
data. The subset with highest performance is then chosen (Kohavi and John, 1997).

A popular wrapper approach is FS using Genetic Algorithms (GA). This method mimics the
properties of biological evolution (e.g crossover, inheritance, mutation, and selection) applying
heuristic search methods to optimize the amount of variables in a data set (Pantanowitz and
Marwala, 2009). Wrapper methods can be computationally intensive (Mohamad et al., 2004)
and prone to overfitting, introducing bias and increasing the classification error. Nevertheless,
GAs have demonstrated to be effective at handling both small and high-dimensional data.

Embedded methods are somewhat similar to wrappers, but they perform FS as part of
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the learning process. They are specific to a given algorithm that learns which features best
contribute to the performance of a model. The most common examples of embedded methods
are regularization methods (e.g. Lasso and Ridge regressions) (Brownlee, 2014) and decision
tree-based methods. Embedded methods have the advantage that they include the interaction
with the learner and are less computationally intensive than wrapper methods.

Artificial Contrast with Ensembles (ACE) is an embedded FS method that uses RF to select
the best features in a data set. ACE creates a traditional statistical inference setting by building
N RF of M trees and calculating N VIS for 2J covariates in the training data set. That is, J
predictor covariates and J additional artificial covariates. An artificial covariate x∗j is simply a
random permutation of the observed values of predictor xj . This process is repeated for each
feature until the set of J artificial covariates has been generated.

Since these artificial predictors are random permutations of the original, they share the same
marginal distributions, but they are by no means related to the response. The idea is that their
VIS must be low since they are not related to the response, and, hence, they can be used to
create a threshold to better understand when the magnitude of a VIS is indeed large. From each
of the N RF, a VIS is recorded for each predictor as well as a large quantile (q), often q0.8 or
higher, for the VIS of artificial covariates. At the end of this iterative process, a paired t-test is
used to determine whether each of the predictors has a VIS that is larger than the large quantile
from the artificial VIS. All predictors that show a statistically significant improvement over the
artificial variables are selected as important; the remaining predictors are discarded (Tuv et al.,
2009). A Bonferroni approach is used to control the type I error.

The R package VSURF (Genuer et al., 2015), is also an embedded method that uses RF
as a mean to select important features. It is based in a two-strategy approach: (1) preliminary
elimination and ranking and (2) variable selection. In the first step, the objective is to find
important variables highly related to the response using RF VIS. In the second step, a series of
embedded RF are modeled starting with a RF build with only the most important variable and
ending with a model having all the variables selected in the first step. The smallest model (and
hence its corresponding variables), having a mean OOB error less than the minimum mean OOB
error plus its standard deviation is selected.

3 Methodology

This section presents the detailed description of TI-FS, and the data used. The premise behind
TI-FS is that a variable can be imputed taking into account only those variables that are related
to it. When a missing value in a specific variable must be imputed, the imputation algorithm
might not need to make a large amount of preliminary imputations in all other covariates with
missing values or carry out a computationally-intensive optimization routine until convergence
in the MVI is obtained. The method is currently implemented in two phases: FS followed by
MVI.

3.1 Proposed Approach

Algorithm 1 summarizes the main steps of the proposed approach. Let Dmis be a n × p-
dimensional data set having missing values. By default, the algorithm uses a forest of 125
trees (T ) unless specified by the user. The maximum amount of imputations, k, per missing
record is also set to 30, unless the user specifies otherwise. This value k was set to 30 to ensure
convergence of the imputation (Comulada, 2015). The categorical and numerical impute change
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Algorithm 1: Proposed Imputation Scheme.
Input : A data set Dmis having missing values
Output : A data set Dimp, with all missing values imputed
Require: T ← 125; /*Number of trees in the RF.*/;

k ← 30; /*Maximum amount of imputations.*/;
tc ← 4; /*Categorical impute change.*/;
tn ← 0.025; /*Numerical impute change.*/;

foreach Xi do
mi ← CountMissVal(Xi) /*M is a vector of the frequency of missing values in each
Xi.*/;

end
Dimp

0 ← MeanMode(Dmis) /*Initial imputation using mean/mode.*/;
foreach xi do

fi ← GA(Di
imp,0 ∼ D−iimp,0 /*Run feature selection.*/;

end
F ← CreateIncidenceMatrix(F ) /*Create Important variables incidence matrix.*/;
O ← Sort(M) /*Vector of indices of columns in Dmis sorted in increasing order of
missing values.*/;

foreach Xi ∈ Dmis do
cols ← which(fi == 1) ∪ which(ColNames(Dmis) == “Y ”) /*Important variables
and overall Y of data.*/;
xobsi ← NamesCompleteCases(Xi) /*Row names of observed values in Xi.*/;
xmis
i ← NamesInCompleteCases(Xi) /*Row names of missing values in Xi.*/;
Xmis

i ← Xi[xmis] /*Missing values in Xi.*/;
Dtrain← Dimp

0 [xobsi , cols] /*Training sample.*/;
Dtest← Dimp

0 [xmis
i , cols] /*Testing sample.*/;

foreach record r in Xi do
while j in 1 : k or δn > tn or δc 6= tc do

j = 1;
rF ← randomForest(Dtrain[Xi] ∼ Dtrain, T) /*Fit RF.*/;
P ← Predict(Xi[x

mis
i ]);

δn ← ChangeInImpNum(Pnew, Pold);
δc ← ChangeInImpCat(Pnew, Pold) ;
j = j + 1;

end
end
if is.numeric(Xi)==TRUE then

Ximp
i = mean(Pnew, Pold);

end
else

Ximp
i = Pnew

end
end
Return Dimp /*Imputed data set.*/
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thresholds, tc and tn, are also required parameters within the algorithm. tc is set to 4, meaning
that the imputation of record r in a categorical missing variable Xi stops after 4 unchanging
consecutive imputations. In a similar way, the numerical impute change threshold (tn) is set to
2.5%, meaning that the imputation for a record r ∈ Xi stops when the percentage difference
between the actual imputation (Pnew) and an old one (Pold) is 2.5% or less.

Variables with missing values are first identified in the incomplete data set Dmis. A vector
M is created with the amount of missing values in each missing variable Xi. Afterwards, an
initial guess of the missing values in Dmiss is carried out using mean/mode imputation, prior to
FS. The statistically significant variables for each Xi ∈ Dmis are then determined using genetic
algorithms (GA). An important variables incidence matrix F is created as a result. The columns
in F refer to the variables with missing values, and the rows of the matrix refer to all variables in
the data set. In this incidence matrix, a value of zero in element i, j implies predictor i was not
detected as to have a significant relationship with predictor j. Otherwise, element i, j would have
a value of one, portraying a significant relationship between variables i and j. The imputation
of X ′is is carried out in increasing order of missing values. Therefore, O is the vector of indices
of columns in Dmis, sorted in increasing order of missing values. O indicates the order in which
missing variables Xi are imputed in the data set.

A RF of T trees is built for each variable with missing values Xi, treating the vector of its
observed values Dtrain[Xi] as the response. The data set used to train the RF (Dtrain) includes
the response of the overall supervised learning scenario, Y , as well as all other predictors that
have been selected by the FS algorithm, as indicated by the elements that are equal to 1 in
column j of incidence matrix F. The RF draws T bootstrap samples of Dtrain to build the T
decision trees in the ensemble. The trained RF rF is then used to predict the missing values in
Xi. The testing sample Dtest, consists of Y and the important variables of Xi and it is used to
predict Xi’s missing values.

This process is repeated k times or until a stopping criterion t is met. The change in
imputation of numerical variables δn, is the percentage of difference between the new imputation
of a missing value, Pnew and its previous, as given by Pold. When δn is less than or equal to tn,
the algorithm stops imputing values for that record r of Xi and moves on to the next one. In the
case of categorical variables, if the new imputed value has not changed in the last tc iterations,
then, the algorithm stops the imputation process for that record and moves to the next r in Xi.
Finally, the overall imputation of numerical missing values, Ximp

i , is given by the average of the
j imputations used in δn. Additionally, the final imputation for a categorical missing value is
given by its last imputation.

3.2 Data

Different data sets were used throughout this work to evaluate the FSn, the parameter tunning
of the RF imputation and the final comparison of the proposed imputation scheme with KNN
and missForest. These data sets are divided into three groups mainly: Publicly available data,
simulated scenarios and a special case study data set called Endometriosis Patient Registry
(EPR).

Table 1 gives a general description of all data sets. Cleveland Heart Disease (Detrano
et al., 1989), Breast Cancer Wisconsin (Wolberg and Mangasarian, 1990) and Sylva Ecology (US
Forest Service, 2006) are publicly available at the UCI machine learning repository (Lichman,
2013). The simulated data sets used have: (1) linear relationships (Tuv et al., 2009)-LinClass145,
LinReg203, (2) nonlinear relationships (Friedman, 2001)-NonLinReg70, NonLinReg38, NonLin-
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Table 1: General description of data sets.

Data set Records Num.
Attr.

Cat.
Attr.

Variables
with
MV’s

Missing Response

Heart disease 303 5 8 2 2% Class
Breast Cancer 699 0 10 1 2% Class
Sylva 13,085 51 177 0 0% Class
SimOriginal 500 4 6 0 0% Num
LinReg203 500 151 52 0 0% Num
LinClass145 500 86 59 0 0% Class
NonLinReg70 500 70 0 0 0% Num
NonLinReg38 500 27 11 0 0% Num
NonLinReg125 500 77 48 0 0% Num
EPR 2,763 5 94 25 14% Class

Table 2: SimOriginal data structure. Simulated data includes 500 observations in 10 mixed-type
data predictors and one numerical response variable.

X00 ∼ Unif(−0.25, 0.25) X01 ∼ N(0, 1)

X1 = X00 +X01 X7 ∼ Unif(1, 3)
X2 = 2 ∗X1 +X01 X8 ∼ Unif(1, 5)
X3 = X1 +X2 +X01 X9 ∼ Unif(1, 7)
X4 = X1 ∗X2 +X01 X10 ∼ Unif(1, 10)

X5 =

{
Unif(2, 4) X1 ≥ 0

1 elsewhere
Y ∼ 3X1 +X2 +X00

X6 ∼ Unif(1, 2)

Reg125 and (3) SimOriginal which was simulated using R software (Team, 2016).
The structure of the SimOriginal data set is shown in Table 2. It was simulated so that half

of the predictors are related (X1 − X5), while the remaining half are independent (X6 − X10).
The value of predictor X2 depends on the value of predictor X1 plus random noise based on
the standard normal distribution, N(0, 1). Predictors X3 −X5 also depend on the value of X1

and so on. In addition, predictors X3 and X4 further depend on X2. For X3, the relationship
with X2 is additive, whereas its relationship with X4 is multiplicative. Finally, the response was
generated based on an additive model using X1, X2 and a random uniform noise.

The Endometriosis Patient Registry (EPR) is a data set from the Endometriosis Research
Program (ERP) at the Ponce School of Medicine and Health Sciences, is relatively large with a
moderate number of missing values. This registry gathers information of women with
endometriosis-related symptoms, some of which chose to be diagnosed via an invasive surgi-
cal procedure (e.g. laparoscopy, laparotomy). It includes data on demographical information,
endometriosis-related symptoms, pre-existing conditions, lifestyle choices, and family and medi-
cal history for a total of 99 different variables and 2,763 records.
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The EPR’s main challenge is the fact that it has more than 37,000 (14%) missing values.
If any record with missing values were to be discarded, there would be zero records left. This
issue comes up from the fact that this data was collected using a survey that was subject to
changes over a ten-year period (e.g. some questions were added, some questions were removed).
Also, it is the most complete data repository for endometriosis patients in Puerto Rico. It took
a significant amount of time and effort to gather and, thus, it is key for advancing the knowledge
of endometriosis in Puerto Rican patients.

4 Analysis

TI-FS consists of two phases: (1) selecting the important features of each missing variable in
the data set and (2) imputing the missing variables based on the significant variables chosen
by the FS. Figure 1 depicts an overview of the evaluation done throughout this work. In order
to develop TI-FS, five different FS methods were considered and evaluated in a cross-validation
(CV) setting and an extensive parameter tuning was carried out to determine the most suitable
combination of parameters for the RF imputation. Lastly, its performance was compared to
KNN and missForest.

4.1 Evaluation of FS Methods

Five FS methods (ACE, CFS, ReliefF, GA and VSURF) were evaluated and the most suitable
was used in TI-FS. The performance of the FS methods was assessed using five-fold CV on a RF
model. In addition, a second evaluation was carried out using the simulated data sets, since their
structure was known. Seven data sets (discussed in Section 3.2 of different sizes were used in
this evaluation. Thirty bootstrap samples of each of the seven data sets were created, therefore,
the five-fold CV was carried out 30 times for each FS method and each data set. All of the
experiments in this phase were performed using the R statistical software (Team, 2016).

The ACE method used in this evaluation is a modified version of the original ACE by Tuv
et al. (2009). This Tuv et al. (2009) version uses gradient boosted trees (GBT) to obtain the
variable scores, whereas the original ACE uses RF. The CFS and ReliefF FS methods were

Figure 1: Flow chart of proposed MVI approach.
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implemented using the R package FSelector (Romanski and Kotthoff, 2018). The VSURF
method was implemented using the R package VSURF (Genuer et al., 2015) as well. Finally, the
GA FS algorithm was executed using the R package caret (Kuhn, 2020).

Performance Measures Four performance measures were evaluated in a five-fold cross-
validation setting: (1) accuracy, (2) best subset size, (3) run time and (4) overall desirability.
In classification models, the accuracy is the fraction of instances that are correctly predicted,
however, the accuracy of a regression model is given by the prediction error (PRESS). PRESS
values were scaled to a range between 0 and 1 and its complement was calculated to convert them
into accuracy values. Consequently, values close to one are preferred for this scaled measure.

Run time denotes the CPU time, in seconds, taken to run the algorithm. A faster FS method
is desired; hence, lower run time values are preferred. The Best subset size depicts the number of
important variables selected by the FS method. Smaller subsets will lead to less complex models
and, thus, smaller subsets are preferred.

Since various performance measures may favor different methods, a desirability function
was used to determine the top performer. The overall desirability function (DFS,1) combines the
previous measures and gives each one of them different weights based on their relative importance:
Accuracy (60%) > run time (30%) > best subset (10%) as in Equation (2):

DFS,1 = 0.6× (Accuracy) + 0.3× (1−Runtime′) + 0.1× (1−BestSubset′). (2)

Note that all the performance measures were scaled between 0 and 1 before calculating the
desirability function using Equation (3):

P ′i =
Pi −min(Pi)

max(Pi)−min(Pi)
. (3)

In addition, the Sensitivity, Specificity, Accuracy and overall Desirability function were cal-
culated for the simulated data sets since their important variables were known. The sensitivity
was calculated as the proportion of correctly identified important variables and the specificity
as the proportion of irrelevant variables. The overall desirability (DFS2) combines the previous
measures in Equation (4) and gives each one of them different weights based on their relative
importance: Sensitivity (50%) > specificity (25%) > accuracy (25%). Equation (4) was scaled
to values between 0 and 1 as well:

DFS,2 = 0.5× Sensitivity + 0.25× Specificity + 0.25×Accuracy. (4)

4.2 Evaluation of RF Imputation

Additional experiments were carried out in order to improve the RF-based imputation perfor-
mance. Specifically, various factors were taken into account for the evaluation of the stopping
criteria in the imputation of the missing values in Xi. This algorithm was implemented using R
statistical software as well as the RF function available in the R package randomForest (Liaw
and Wiener, 2002).

Figure 2 portrays the multiple factors evaluated for the imputation stopping criteria and the
overall imputation. Five different factors were considered in this evaluation: (1) missing ratio,
(2) impute change, (3) stage, (4) stop rule, and (5) imputation strategy. Since the efficiency
of an imputation technique depends on the amount of missing values present in a data set, the
experiments were performed using randomly generated missing ratios of 5%, 10%, 15% and 20%.
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Figure 2: RF imputation parameter tuning. Diagram of the factors and their corresponding
levels evaluated for the imputation stopping criteria and the overall imputation.

The stopping criteria is calculated for numerical variables, δn, as the percentage of difference
between the new imputation of a missing value and an old imputation (Equation (5)). This
difference is compared against a threshold called impute change (tn). The algorithm will keep
imputing the missing value as long as δn > tn. The idea here is that tn should be a small value
in order to say that the imputed value is no longer changing. Thus, the following values for the
impute change threshold were evaluated: 2.5%, 5% and 7.5%:

δn =
xnew − xold

xold
. (5)

In the case of categorical variables, if the new imputed value stays the same in the last δc
iterations, then, the algorithm stops imputing for that record and moves on to the next record
r in Xi. Three options were also evaluated for tc, where the imputation value did not: Change
in the last two iterations (tc=2), change in the last three iterations (tc=3) and did not change
in the last three iterations (tc=4).

Two factors were considered to decide how δn is calculated in the algorithm: (1) stage and
(2) stop rule. Three stages were evaluated: Stage 1, 2, and 3, denoting the amount of imputation
differences considered for the final impute change in the iteration. These stages go along with
three stopping criterias: Simple, average and maximum, which depict the aggregation of these
stages to obtain the final imputation change. Table 3 shows some of the combinations of stages
and stop rules along with the sample equations used to calculate δn in the experiments. For
example, if the combination stage 2/average is used, then, δn is calculated as the average of the
difference between imputations j and j− 1 and imputations j− 1 and j− 2. The same rationale
was used for the rest of the combinations.

Finally, two options were evaluated for the overall imputation value of record r in numerical
missing variable Xi: Last value, meaning that the final imputed value is ximp

j , and average,
which implies that the final imputed value is the average of the imputed values considered in the
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Table 3: Examples of equations used to calculate δn in the parameter tuning.

Stage Stop Criteria δn

1 Simple
(ximp

j − ximp
j−1)

ximp
j−1

2 Average

(ximp
j −ximp

j−1)

ximp
j−1

+
(ximp

j−1−x
imp
j−2)

ximp
j−2

2

3 Maximum max
{(ximp

j − ximp
j−1)

ximp
j−1

,
(ximp

j−1 − x
imp
j−2)

ximp
j−2

,
(ximp

j−2 − x
imp
j−3)

ximp
j−3

}

calculation of δn. If Xi is a categorical variable, then, the final imputed value (ximp
j ) is the last

value imputed. Overall, forty two different combinations were evaluated for each missing ratio,
for a total of 168 combinations.

Performance Measures Both, regression and classification performance measures were eval-
uated due to the mixed-typed nature of the data sets. Four performance measures for numerical
variables were evaluated: (1) coefficient of determination (R2), (2) normalized root mean squared
error (NRMSE), (3) index of agreement (d2) and (4) overall numerical desirability (Dn). R2,
NRMSE, and d2 were implemented using the hydroGOF R package (Zambrano-Bigiarini, 2020).

The overall numerical desirability (Dn) is an additive function that combines all performance
measures and treats them as equally important (Equation (6)):

Dn = R2 + d2 + (1−NRMSE). (6)

Note that the complement of NRMSE is used in order to reflect that larger values of the
desirability function are preferred.

The classification error (E), area under precision-recall curve (AUPRC) kappa statistic (κ)
and overall categorical desirability (Dc) were used to evaluate the performance of categorical
variables. The classification error denotes the proportion of sample cases incorrectly classified.
AUPRC and the kappa statistic were calculated using the PRROC (Grau and Keilwagen, 2018)
and the psych (Revelle, 2019) R packages, respectively.

In the same way as with the numerical variables, the overall categorical desirability (Dc)
was assessed considering each term as equally important (Equation (7)):

Dc = κ+ AUPRC + (1− E). (7)

Lastly, in order to evaluate both, numerical and categorical variables at the same time, an
overall desirability function (Do) was calculated as the summation of the individual numerical
and categorical desirabilities. Both are equally weighted as in:

Do = Dn +Dc. (8)
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Figure 3: Flow chart of the performance evaluation of the MVI schemes.

4.3 Evaluation of Imputation Methods

The performance of TI-FS was compared to KNN and missForest. Figure 3 displays a gen-
eral overview of the MVI evaluation. Nine data sets (BreastCancer, Heart, EPR, LinReg203,
LinClass145, NonLinReg70, NonLinReg125, NonLinReg38 and SimOriginal), described in Sec-
tion 3.2, were used in this final evaluation. Thirty bootstrap samples were generated for each
data set and missing values were randomly created for each one of them. These missing values
were simulated at 5%, 10%, 15% and 20% missing ratios.

KNN and missForest were implemented using the R packages VIM (Kowarik and Templ,
2016) and missForest (Stekhoven, 2013), respectively. The performance measures used for the
evaluation of the imputation methods are the same as the ones explained in Subsection 4.1.

5 Results

All experiments were run and the performance of TI-FS was assessed. This section summarizes
the major results of the for the evaluation of the FS method and the final assessment of the
performance of TI-FS against KNN and missForest.

5.1 TI-FS

FS Table 4 shows the aggregated results for the five-fold CV used in the selection of the FS
method. In Table 4, columns 3-6 show the average value of the performance metrics on each
FS method across the seven data sets. Bold values in the D′FS,1 column represent the largest
normalized desirability. Figure 4 also shows the average desirability of the FS methods, including
standard error bars for 30 replicates. Overall, CFS performed the best in 4 out of 7 data sets
(57% of the evaluated cases).



620 Rosado-Galindo, H. and Dávila-Padilla, S.

Table 4: FS five-fold CV results. D′FS,1 values were averaged across replicates and normalized
with respect to the largest desirability of each data set.

Data set FS
Method Accuracy Run

Time
Best
Subset D′FS,1

BreastCancer CFS 0.9834 0.0013 8 0.8157
GA 0.9824 2.1136 7 0.7233
ACE 0.9853 0.0883 10 0.7548
ReliefF 0.9675 0.0603 6 1.0000
VSURF 0.9839 1.7940 6 0.7613

EPR CFS 0.7819 0.2680 11 0.9159
GA 0.8934 7.0413 70 0.8305
ACE 0.7945 0.3943 28 0.7047
ReliefF 0.6782 0.5435 10 0.3755
VSURF 0.7278 59.5774 12 1.0000

Heart CFS 0.7497 0.0220 5 0.5775
GA 0.8077 0.7780 10 0.6229
ACE 0.8112 0.0057 8 0.6224
ReliefF 0.9735 0.0343 7 1.0000
VSURF 0.8016 0.1663 7 0.6430

LinReg203 CFS 0.4579 0.0350 2 1.0000
GA 0.7064 1.0043 86 0.9286
ACE 0.7465 0.0023 73 0.8985
ReliefF 0.4420 0.0613 78 0.9288
VSURF 0.7673 7.0063 6 0.9910

LinClass145 CFS 0.7196 0.0300 9 1.0000
GA 0.3981 0.9180 85 0.6589
ACE 0.7110 0.0463 29 0.8131
ReliefF 0.6658 0.0427 52 0.7718
VSURF 0.7045 5.8063 7 0.7942

NonLinReg70 CFS 0.6588 0.0253 5 1.0000
GA 0.8022 0.8507 38 0.7779
ACE 0.8256 0.0243 22 0.8011
ReliefF 0.6915 0.0683 17 0.8084
VSURF 0.8396 3.2400 7 0.9076

Sylva CFS 0.9852 0.9700 7 1.0000
GA 0.9961 31.6630 147 0.7014
ACE 0.9967 3.4700 59 0.7406
ReliefF 0.9597 1.1637 18 0.6246
VSURF 0.9949 334.8100 8 0.8399
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Table 5: FS performance on simulated scenarios. D′FS,2 values were averaged across replicates
and normalized with respect to the largest desirability of each data set.

Data set FS
Method Sensitivity Specificity Accuracy D′FS,2

LinClass145 ACE 0.4467 0.8321 0.7110 0.7737
CFS 0.4644 0.9849 0.7196 1.0000
GA 0.6867 0.4274 0.4543 0.8159
ReliefF 0.4956 0.6582 0.6658 0.8217
VSURF 0.1978 0.9718 0.7045 0.5889

LinReg203 ACE 0.1667 0.6365 0.6273 0.8571
CFS 0.0167 0.9903 0.9711 0.1000
GA 0.1667 0.5008 0.4943 1.0000
ReliefF 0.6250 0.6198 0.6199 0.7685
VSURF 0.7500 0.9864 0.9818 0.7381

NonLinReg70 ACE 0.6900 0.7472 0.7390 0.8326
CFS 0.1967 0.9444 0.8376 0.6591
GA 0.8633 0.5044 0.5557 1.0000
ReliefF 0.3333 0.7756 0.7124 0.6812
VSURF 0.4433 0.9611 0.8871 0.8410

Table 6: Normalized sum of desirability scores of the FS methods across all data sets.

FS Method DFS,1 score DFS,2 score

ACE 0.8456 0.8748
CFS 1.000 0.6247
GA 0.8311 1.0000

ReliefF 0.8732 0.8066
VSURF 0.9410 0.7699

As mentioned in Subsection 4.1, the simulated data sets (LinReg203, LinClass145 and Non-
LinReg70) were evaluated in more detail since their structure and important variables were
known. Table 5 shows the results of this analysis, again, bold values in the D′FS,2 column show
the largest desirability. Figure 5 also displays the average desirability results including standard
error bars for 30 replicates. GA performed better in 2 of 3 data sets (66% of the evaluated
scenarios).

Table 6 portrays the normalized desirability score for each FS method. This score is given
by the normalized sum of the desirability function across the data sets. The third column in
Table 6 is the score across all data sets using the results from Table 4 (D′FS,1), while column 4
shows the scores across the simulated data sets (see Table 5-D′FS,2). These scores confirm the
previous results, CFS and GA are the top FS methods. Note that the issue here is failing to
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Figure 4: Average desirability and standard errors based on 30 replicates of FS methods.

detect important variables since TI-FS imputes missing variables strictly based on the important
variables selected by the FS method. Selecting variables in excess might not have much of an
effect on the overall execution of the imputation scheme, as trees can choose not to incorporate
them within the prediction model.

RF Imputation The parameter tuning of the RF imputation (discussed in Subsection 4.2)
was carried out using the top two FS methods, CFS and GA. Both methods were used in order to
evaluate which FS method in fact allows for the best imputation performance. Table 7 shows the
top 3 combinations of parameters for each missing ratio and FS method, including standard error
bars of 30 replicates. Bold values in the column D′o represent the largest desirability. Figure 6
also portrays the top 3 performing combinations of parameters (using both GA and CFS) at each
missing ratio in terms of the overall normalized desirability (D′o). The majority of the D′o results
in Figure 6 fall in the lower boxes of the plot, specifically in the lower left. This corner includes,
for the most part, restrictive assumptions with regards to the impute difference calculation of
numerical variables (stage 3) and its threshold (tn = 2.5%). These results suggest that restrictive
combinations of parameters perform better with higher ratios of missing values.

In summary, the results in Table 7 confirm GA as the best choice for FS, given that it leads
to the largest values of desirability (D′o) in three out of four missing ratios (or 75% of the cases).
Furthermore, the selected combinations of parameters for TI-FS are given in Table 8. This
combination was chosen based on the premise that the proposed method is mostly focused on
data with medium to high proportions of missing values. Thus, the proposed imputation scheme
used GA as FS method along with the random-forest-based imputation having tn = 2.5%, tc = 4,

δn =
ximp
j −ximp

j−3

ximp
j−3

, with ximp
n =

ximp
j−3+ximp

j

2 being the final imputation of numerical missing values

and ximp
c = ximp

j the final imputation of categorical missing values.
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Figure 5: Average desirability and standard errors for 30 replicates of the FS methods on Lin-
Class145, LinReg203 and NonLinReg70.

Figure 6: Top three performing combinations of CFS and GA per missing ratio.
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Table 7: Best performing combinations of parameters for GA and CFS per missing ratio. D′o
values were averaged across replicates and normalized with respect to the largest desirability for
each combination of FS method and missing ratio.

Missing
Ratio
(%)

FS
Method

Impute
Change

(cat/num)
Stage Stop

Rule
Imputation

(cat)
Imputation

(num) D′o

5 GA 2/7.5 1 Simple LastValue LastValue 1.0000
3/5 3 Simple LastValue LastValue 0.9964
2/7.5 1 Simple LastValue Avg 0.9963

CFS 2/7.5 1 Simple LastValue Avg 0.8447
2/7.5 1 Simple LastValue LastValue 0.8434
4/2.5 1 Simple LastValue LastValue 0.8432

10 GA 3/5 3 Simple LastValue Avg 1.0000
3/5 3 Simple LastValue LastValue 0.9993
2/7.5 1 Simple LastValue Avg 0.9992

CFS 2/7.5 1 Simple LastValue Avg 0.9722
3/5 1 Simple LastValue Avg 0.9716
3/5 3 Simple LastValue Avg 0.9710

15 CFS 4/2.5 2 Simple LastValue Avg 1.0000
4/2.5 2 Simple LastValue LastValue 0.9997
4/2.5 3 Simple LastValue Avg 0.9988

GA 4/2.5 2 Simple LastValue LastValue 0.9977
4/2.5 2 Simple LastValue Avg 0.9943
4/2.5 3 Simple LastValue Avg 0.9926

20 GA 4/2.5 3 Simple LastValue Avg 1.0000
4/2.5 3 Simple LastValue LastValue 0.9999
2/7.5 3 Simple LastValue Avg 0.9899

CFS 4/2.5 3 Simple LastValue Avg 0.9728
4/2.5 3 Simple LastValue LastValue 0.9710
2/7.5 3 Simple LastValue Avg 0.9624

Table 8: Selected combination of parameters for TI-FS.

Parameter Setting

Impute change num 2.5
Impute change cat 4
Stage 3
Stop Rule Simple
Imputation num Avg
Imputation cat Last Value
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Table 9: Normalized overall desirability (D′o) of imputation methods. D′o values were averaged
across replicates and normalized with respect to the largest desirability for each combination of
data set and missing ratio.

Data set Method Missing Ratio

0.05 0.10 0.15 0.20

BreastCancer KNN 0.8109 0.7870 0.7888 0.7911
FS-TI 0.4199 0.4203 0.4325 0.4699
missForest 1.0000 1.0000 1.0000 1.0000

EPR KNN 0.9387 0.9321 0.9167 0.9160
FS-TI 0.6549 0.6181 0.6199 0.5968
missForest 1.0000 1.0000 1.0000 1.0000

Heart KNN 0.9621 0.9610 0.9628 0.9670
FS-TI 0.7967 0.7950 0.7612 0.8638
missForest 1.0000 1.0000 1.0000 1.0000

LinClass145 KNN 0.7719 0.7296 0.7234 0.7071
FS-TI 1.0000 1.0000 0.9438 0.8949
missForest 0.9996 0.9763 1.0000 1.0000

LinReg203 KNN 0.9270 0.9342 0.9352 0.9293
FS-TI 0.9480 0.9485 0.9889 0.9739
missForest 1.0000 1.0000 1.0000 1.0000

NonLinReg125 KNN 0.7965 0.7722 0.7261 0.7128
FS-TI 1.0000 0.9684 1.0000 0.9480
missForest 0.9911 1.0000 0.9791 1.0000

NonLinReg38 KNN 0.8515 0.8139 0.7809 0.7609
FS-TI 0.9704 0.9498 0.9614 0.9474
missForest 1.0000 1.0000 1.0000 1.0000

NonLinReg70 KNN 0.7140 0.6653 0.6336 0.6145
FS-TI 1.0000 0.9769 0.9618 0.9420
missForest 0.9944 1.0000 1.0000 1.0000

SimOriginal KNN 0.2926 0.9465 0.3191 0.9152
FS-TI 1.0000 1.0000 1.0000 1.0000
missForest 0.4203 0.9532 0.4274 0.9780

5.2 Performance of Imputation Methods

Table 9 shows the average normalized overall desirability of the three imputation methods. Bold
values represent the largest desirability of each data set and missing ratio. Figure 7 also compares
the average D′o results including standard error bars based on 30 replicates.

TI-FS outperforms KNN in the simulated scenarios, which have complex linear, non-linear,
additive and multiplicative relationships between variables. Figures 8–9 suggest that TI-FS
performs better on imputing categorical variables than on numerical variables, specially at higher
missing ratios (15% and 20%), where there is less than a 4% difference between TI-FS and
missForest. It must noted that, in these scenarios, TI-FS uses between 42% and 59% of the
variables that are available to missForest for imputation.

In general, missForest was the top performer. However, TI-FS still a reasonable approxima-
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Figure 7: Average performance of the imputation methods based on the normalized overall
desirability.

tion if considered that it had, on average, 60% of the total predictors available to carry out the
imputations, whereas the RF in missForest treated all variables as candidate splitters. Table 10
shows that the performance of TI-FS is comparable to missForest in the simulated scenarios,
with no more than 3.6% difference, yet, it had approximately half of the variables available to
execute the imputations.
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Figure 8: Average performance of the imputation methods based on the categorical desirability.
Please note that results are not available for NonLinReg70 data set since it only has numerical
variables.

Table 10: Comparison of performance and amount of variables used by TI-FS and missForest.

Data set D′o Used variables

TI-FS missForest %change TI-FS missForest %change

Heart 0.8042 1.000 24.4 10 13 30.0
Breast Cancer 0.4356 1.000 129.5 7 10 42.9
EPR 0.6224 1.000 60.7 70 99 41.4
LinReg203 0.9648 1.000 3.6 86 203 136.0
LinClass145 0.9597 0.9940 3.6 85 145 70.6
NonLinReg70 0.9702 0.9986 2.9 38 70 84.2
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Figure 9: Average performance of the imputation methods based on the numerical desirability.
Please note that results are not available for Breast Cancer data set since it only has categorical
variables.

6 Conclusions

Properly imputed data gives the opportunity to retrieve, not only the best possible predictions
for the missing values, but to replace them with reliable values. The goal of any successful MVI
scheme is to exploit the information in the incomplete cases and effectively develop approaches
to better understand the underlying populations described in these data sets.

In this paper, a tree-based imputation method using FS has been proposed. This method
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considers the relationships among variables using GA FS. TI-FS is intended for use in complex
data sets with a moderate to large amount of missing values.

Results showed that the proposed method has good performance in scenarios which have
complex linear and non-linear relationships between variables. The results also suggested that
TI-FS has better performance imputing categorical variables than numerical variables, specially
at higher missing ratios, where the percentage difference is no more than 3.6% of missForest.

TI-FS still a reasonable approximation if considered that it had, on average, 60% of the total
predictors available to carry out the imputations and, thus, required substantially less preliminary
imputations. Another difference is that the convergence criterion considers a global convergence
criteria in missForest, while the approach for TI-FS is global convergence criteria. This, in turn,
could translate to a scheme that is converges faster than its multivariate counterpart.

As future improvements, it is suggested to evaluate other computationally-feasible imputa-
tion for the initial guess of the data (e.g. a RF-based imputation). This has a direct impact on
the performance of the FS method and, therefore, in the imputation. In conjunction with better
preliminary imputations, improvements on FS can further reduce the computational cost of the
MVI scheme and, thus, allow for a more efficient model of the relationship between the variable
being imputed and the remaining independent variables in the data set which, in turn, translates
to better missing value estimates.
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