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Abstract

In this paper a new two-parameter distribution is proposed. This new model provides more flexi-
bility to modeling data with increasing and bathtub hazard rate function. Several statistical and
reliability properties of the proposed model are also presented in this paper, such as moments,
moment generating function, order statistics and stress-strength reliability. The maximum like-
lihood estimators for the parameters are discussed as well as a bias corrective approach based on
bootstrap techniques. A numerical simulation is carried out to examine the bias and the mean
square error of the proposed estimators. Finally, an application using a real data set is presented
to illustrate our model.
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1 Introduction

Mixture models have been playing an important role in distribution theory (Patil and Rao,
1978). In recent years, there has been a renewed interested in proposing new models based on
mixture distribution. A simple case can be considered where new models are generated by a
two-component mixture

f(t|Λ1,Λ2, p) = pf1(t|Λ1) + (1− p)f2(t|Λ2) , (1)

where 0 ≤ p ≤ 1 is mixing proportion (MP) and Λ1,Λ2 are the parameters related to the
probability density function (PDF) f1(·) and f2(·).

Carta and Ramirez (2007) considered (1) based on a mixture of two Weibull distribution
where the MP is a free unknown parameter to be estimated. Ramos and Louzada (2019) pro-
posed a new one parameter distribution based on the mixture of a gamma and an exponential
distribution. Ghitany et al. (2011) proposed a weighted Lindley model based on the mixture of
two gamma distribution, where the MP is p = θ/(λ+ θ), λ > 0 and θ > 0. Further, Ghitany
et al. (2013) considered λ = 1 for MP and two Weibull distributions. The obtained model was
named as power Lindley distribution. Ramos and Louzada (2016) unified these models by con-
sidering the mixture of two generalized gamma distributions. The main reason for the authors
considered such MP comes from the fact that the new distributions are generalizations of the
well known Lindley distribution. Other generalizations of the Lindley distribution can be view
in Ekhosuehi et al. (2018); Yassmen (2019); Kwong and Nadarajah (2019).

On the other hand, many different MPs can be considered instead. For instance, let p =
(λ− 2θ)/(λ− θ), then 0 ≤ p ≤ 1 if λ ≥ 0 and 0 ≤ θ ≤ λ/2. Here, we considered this MP based
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on two gamma distribution. The obtained distribution has PDF given by

f(t|θ, λ) =
λθ

(λ− θ)Γ(θ)
tθ−1(λ+ λt− 2θ)e−λt, t > 0, (2)

where 0 ≤ θ ≤ λ/2 and λ > 0 are the parameters and Γ(θ) =
∫∞

0 e−xxθ−1dx is the gamma
function. Although we have considered two gamma distribution as f1(·) and f2(·), the same idea
can be extended for other distributions such as Weibull, Lognomal, Exponentied Exponential
among others. To the best of our knowledge, this distribution has not yet been presented in the
literature. We also have not encountered its respective one parameter particular cases.

Mixture of gamma density functions has been used to describe heterogeneity (see, Mayrose
et al. (2005)). In this paper, a significant account of mathematical properties has been presented
for the new distribution such as moments, survival properties and its entropy function. For
the new distribution the hazard function has increasing or bathtub shape, depending on the
values of the parameters. This property plays an important role to describe lifetime data (Chen,
2000; Wang et al., 2002). The stress-strength parameter R = P (T2 < T1) where T1 and T2

have PDFs given by f(t|θ1, λ) and f(t|θ2, λ), respectively. The maximum likelihood estimators
(MLEs) of the parameters and its asymptotic properties are discussed. Further, we also present
a bias corrective approach for the MLEs based on bootstrap techniques. A simulation study is
conducted to examine the performance of the proposed estimators. Finally, use our model to
describe a data set related to 30 patients with brain cancer receiving radiotherapy.

The paper is organized as follows. Section 2 introduces our new distribution and its prop-
erties such as moments, moment generating function, order statistics, survival properties and
stress-strength reliability. Section 3 presents the estimators of the unknown parameters based
on MLEs. In Section 4, a simulation study to verify the performance of the MLEs is reported.
Section 5 illustrates the relevance of our proposed methodology for a real lifetime data. Section 6
summarizes the present study.

2 Properties

The proposed distribution can be expressed as a two-component mixture

f(t|θ, λ) = pf1(t|θ, λ) + (1− p)f2(t|θ, λ) , (3)

where 1− p = θ/(λ− θ) (or p = (λ− 2θ)/(λ− θ)) and Tj ∼ Gamma(θ + j − 1, λ), for j = 1, 2,
that is, fj(t|λ, θ) is a Gamma density given by

fj(t|θ, λ) =
λθ+j−1

Γ(θ + j − 1)
tθ+j−2e−λt.

After some algebraic manipulation in (3) the new non-negative random variable has PDF
given by (5). Ghitany et al. (2011) followed a similar way but considering that the MP is
p = θ/(λ+ θ).

The behavior of the PDF (1) when t→ 0 and t→∞ are, respectively, given by

f(0) =


∞, if θ < 1

(λ2 − 2λ)

(λ− 1)
, if θ = 1

0, if θ > 1

, f(∞) = 0.
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Figure 1: Density function shapes for new distribution considering different values of θ and λ.
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Figure 2: Cumulative density function shapes for new distribution considering different values
of θ and fixed λ.
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Figure 1 shows the shapes of the density function for different values of θ and λ.
The cumulative distribution function from the new distribution is given by

F (t|θ, λ) =
γ (θ, λt) (λ− θ)− (λt)θe−λt

(λ− θ)Γ(θ)
, (4)

where γ(x, y) =
∫ x

0 w
y−1e−ydw is the lower incomplete gamma function.

The proposed model may be considered a generalization of the one parameter case given by

f(t|λ) =
λ(λ+ λt− 2)

(λ− 1)
e−λt, t > 0 and λ > 2, (5)

in which is also a new distribution.

2.1 Moments and Moment Generating Function

Moments play an important role in statistical theory, in this section we provide the r-th moment,
the mean, variance and the moment generating function for our distribution.
Proposition 1. For the random variable T with new distribution, the r-th moment is given by

µr = E[T r] =
θ(θ + 1) . . . (θ + r − 1)(λ− θ + r)

λr(λ− θ)
, for r ∈ N. (6)

Proof. Note that if X ∼ Gamma(θ, λ) distribution then the r-th is given by

E[Xr; θ, λ] =
Γ(θ + r)

λrΓ(θ)
=
θ(θ + 1) . . . (θ + r − 1)

λr
, for r ∈ N.

Since the proposed model can be expressed as a two-component mixture, we have

µr = E[T r] =

∫ ∞
0

trf(t|θ, λ)dt = pE[Xr; θ, λ] + (1− p)E[Xr; θ + 1, λ]

=

(
λ− 2θ

λ− θ

)
Γ(θ + r)

λrΓ(θ)
+

θ

(λ− θ)
Γ(θ + 1 + r)

λrΓ(θ + 1)

=
(λ− θ + r)Γ(θ + r)

λr(λ− θ)Γ(θ)

=
θ(θ + 1) . . . (θ + r − 1)(λ− θ + r)

λr(λ− θ)
·

Proposition 2. The r-th central moment for the random variable T is given by

Mr = E[T − µ]r =

r∑
i=0

(
r

i

)
(−µ)r−iE[T i]

=
r∑
i=0

(
r

i

)(
−(λ− θ + 1)θ

λ(λ− θ)

)r−i(θ(θ + 1) . . . (θ + i− 1)(λ− θ + i)

λi(λ− θ)

)
.

(7)

Proof. The result follows directly from the Proposition 1.
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Proposition 3. A random variable T with PDF (5) has the mean and variance given by

µ =
(λ− θ + 1)θ

λ(λ− θ)
and σ2 =

θ
(

(λ− θ + 2)(θ + 1)− θ(λ− θ + 1)2
)

λ2(λ− θ)2
. (8)

Proof. From (6) and considering r = 1, it follows that µ1 = µ. The second result follows from
(7) considering r = 2 and with some algebra the proof is completed.

Proposition 4. For the random variable T , the Moment Generating Function is given by

MX(t) =

(
λ

λ− t

)θ (
1 +

θt

(λ− θ)(λ− t)

)
. (9)

Proof. Indeed, by definition MX(t) = E(etX) we have

MX(t) = p

∫ ∞
0

etX1f1(x)dx+ (1− p)
∫ ∞

0
etX2f2(x)dx = pMX1(t) + (1− p)MX2(t),

for p = λ−2θ
λ−θ and 1− p = θ

λ−θ .

From X1 ∼ Γ(θ, λ) and X2 ∼ Γ(θ + 1, λ) we have MX1(t) =
(

λ
λ−t

)θ
and MX2(t) =(

λ
λ−t

)θ+1
, respectively, for t < λ. Thus,

MX(t) =
λ− 2θ

λ− θ

(
λ

λ− t

)θ
+

θ

λ− θ

(
λ

λ− t

)θ+1

,

and after some algebric computations the proof is completed.

2.2 Order Statistics

Let X1, X2, . . . Xn be a random sample from (5) and X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the the
corresponding order statistics. It is well known that the probability density function and the
cumulative distribution function of the of r−th order statistic say Xr:n, 1 ≤ r ≤ n are given by

fr:n(x) =
n!

(r − 1)!(n− r)!
[F (x)]r−1[1− F (x)]n−rf(x)

=
n!

(r − 1)!(n− r)!

n−r∑
u=0

(−1)u
(
n− r
u

)
[F (x)]r−1+uf(x)

(10)

and

Fr:n(x) =
n∑
l=k

(
n
l

)
[F (x)]l[1− F (x)]n−l =

n∑
l=k

n−r∑
u=0

(−1)u
(
n
l

)(
n− r
u

)
[F (x)]l+u, (11)

respectively, for k = 1, 2, . . . , n. It follows from (10) and (11) that

fr:n(x) =
n!λθtθ−1(λ+ λt− 2θ)e−λt

(r − 1)!(n− r)!(λ− θ)Γ(θ)

n−r∑
u=0

(−1)u
(
n− r
u

)

×
(
γ (θ, λt) (λ− θ)− (λt)θe−λt

(λ− θ)Γ(θ)

)r−1+u
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and

Fr:n(x) =
n∑
l=k

n−r∑
u=0

(−1)u
(
n
l

)(
n− r
u

)(
γ (θ, λt) (λ− θ)− (λt)θe−λt

(λ− θ)Γ(θ)

)l+u
.

2.3 Survival Properties

The survival function of T representing the probability of an observation does not fail until a
specified time t is given by

S(t|θ, λ) =
Γ (θ, λt) (λ− θ) + (λt)θe−λt

(λ− θ)Γ(θ)
, (12)

where Γ(y, x) =
∫∞
x wy−1e−wdw is the uper incomplete gamma function. The hazard function

of T is given by

h(t|θ, λ) =
f(t|θ, λ)

S(t|θ, λ)
=

λθtθ−1(λ+ λt− 2θ)e−λt

Γ (θ, λt) (λ− θ) + (λt)θe−λt
. (13)

This model has increasing and bathtub hazard rate. The following Lemma is useful to prove
such result.
Lemma 1. Glaser (1980): Let T be a non-negative continuous random variable with twice
differentiable PDF f(t) and hazard rate function h(t) and η(t) = − ∂

∂t log f(t).
1. Let η′(t) be η′(t) > 0 (η′(t) < 0), ∀t, then h(t) is increasing (decreasing).
2. Suppose that exists t0 > 0 such that, η′(t) < 0, ∀t ∈ (0, t0), η′(t) = 0 and η′(t) > 0,
∀t ∈ (t0, 0), then if

lim
t→0+

f(t) =∞,

h(t) has bathtub.
Theorem 1. The hazard function (13) is bathtub if θ < 1 and increasing if θ ≥ 1.

Proof. Let

η(t) = −θ − 1

t
− 1

(1 + t− 2θ/λ)
+ λ , (14)

it follows that
η′(t) =

θ − 1

t2
+

1

(1 + t− 2θ/λ)2 . (15)

From (15) we observe that, if θ ≥ 1 then η′(t) > 0 and consequently the hazard function
is increasing ∀t > 0. By other hand, if θ < 1 the function η(t) has a global minimum given by
t0 = (λ−2θ)(1−θ+

√
1−θ)

θλ , that is, η(t) has a bathtub shape and since

lim
t→0+

f(t) =∞,

that implies that, h(t) has a bathtub shape.

Figure 3 gives examples from the shapes of the density function for different values of θ and
λ.
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Figure 3: Hazard function shapes for the new distribution considering different values of θ and
fixed λ.

2.4 Stress-strength reliability

In reliability analysis, the stress-strength reliability usually referred to as the stress-strength
model has obtained wide attention in the literature, including quality control, engineering statis-
tics, reliability, medicine, psychology, biostatistics, stochastic precedence, and probabilistic me-
chanical design (see Kotz and Pensky (2003) for a comprehensive review).

Suppose T2 represents the ‘stress’ which is applied to a certain device and T1 represents the
strength to sustain the stress, then the stress-strength reliability is computed as R = P (T2 < T1),
Proposition 5. Suppose that T1 and T2 have PDFs given by f(t|θ1, λ) and f(t|θ2, λ) distribu-
tions, respectively. If the random variables are independent then the stress-strength reliability
is given by

R =P{T2 < T1} =
p1p2

2(θ1+θ2)θ2B(θ1, θ2)
1F2

(
1, θ1 + θ2; 1 + θ2;

1

2

)
+

q1p2

2(θ1+θ2+1)θ2B(θ1 + 1, θ2)1

F2

(
1, θ1 + θ2 + 1; 1 + θ2;

1

2

)
+

p1q2

2(θ1+θ2+1)(θ2 + 1)B(θ1, θ2 + 1)
1F2

(
1, θ1 + θ2 + 1; 2 + θ2;

1

2

)
+

q1q2

2(θ1+θ2+2)(θ2 + 1)B(θ1 + 1, θ2 + 1)
1F2

(
1, θ1 + θ2 + 2; 2 + θ2;

1

2

)
,

where p1 = λ−2θ1
λ−θ1 , q1 = θ1

λ−θ1 , p2 = λ−2θ2
λ−θ2 , q2 = θ2

λ−θ2 . B(a1, a2) is the beta function defined as
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B(a1, a2) = Γ(a1)Γ(a2)
Γ(a1+a2) and

pFq(α1, . . . , αk;β1, . . . , βl, x) =

∞∑
i=0

(α1)i . . . (αk)i x
i

(β1)i . . . (βk)i i!
,

is the generalized hypergeometric function.

Proof. Since T1 and T2 have PDFs given by f(t|θ1, λ) and f(t|θ2, λ) and the distributions are
expressed as the two-component mixture given (3), respectively, by

fT1(t) = p1f(t; θ1, λ) + q1f(t; θ1 + 1, λ)

and
FT2(t) = p2F (t; θ2, λ) + q2F (t; θ2 + 1, λ),

where f(t) and F (t) are density and cumulative functions of two-parameters Gamma distribution.
Therefore

R = P{T2 < T1} =

∫ ∞
0

FT2(t)fT1(t)dt

=

∫ ∞
0

(
p2F (t; θ2, λ) + q2F (t; θ2 + 1, λ)

)(
p1f(t; θ1, λ) + q1f(t; θ1 + 1, λ)

)
dt

= p1p2

∫ ∞
0

F (t; θ2, λ)f(t; θ1, λ)dt+ q1p2

∫ ∞
0

F (t; θ2, λ)f(t; θ1 + 1, λ)dt

+ p1q2

∫ ∞
0

F (t; θ2 + 1, λ)f(t; θ1, λ)dt+ +q1q2

∫ ∞
0

F (t; θ2 + 1, λ)f(t; θ1 + 1, λ)dt.

(16)

By replacing the densities and cumulative functions f(·) and F (·) on (16) we have

R =
p1p2λ

θ1

Γ(θ1)Γ(θ2)

∫ ∞
0

tθ1−1γ(θ2, λt)e
−λtdt+

q1p2λ
θ1+1

Γ(θ1 + 1)Γ(θ2)

∫ ∞
0

tθ1γ(θ2, λt)e
−λtdt

+
p1q2λ

θ1

Γ(θ1)Γ(θ2 + 1)

∫ ∞
0

tθ1−1γ(θ2 + 1, λt)e−λtdt+
q1q2λ

θ1+1

Γ(θ1 + 1)Γ(θ2 + 1)
×

×
∫ ∞

0
tθ1γ(θ2 + 1, λt)e−λtdt.

(17)

Nadarajah (2003) shows that

ba1

Γ(a1)Γ(a2)

∫ ∞
0

ta1−1γ(a2, bt)e
−btdt =

2−(a1+a2)

a2B(a1, a2)
1F2

(
1, a1 + a2; 1 + a2;

1

2

)
(18)

Thus, from (17) and (18) the proof is completed.

3 Inference

In this section we present the maximum likelihood estimator of the parameters θ and λ of the
proposed distribution as well as a bias corrective approach.
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3.1 Maximum Likelihood Estimation

Let T1, . . . , Tn be a random sample such that T has PDF given in (1). In this case, the likelihood
function from (5) is given by

L(Θ; t) =
λnθ

(λ− θ)nΓ(θ)n

{
n∏
i=1

tθ−1
i

}
n∏
i=1

(λ+ λti − 2θ) exp

{
−λ

n∑
i=1

ti

}
. (19)

The log-likelihood function l(Θ; t) = logL(Θ; t) is given by

l(Θ; t) = nθ log λ− n log(λ− θ)− n log Γ(θ)− λ
n∑
i=1

ti + (θ − 1)

n∑
i=1

log(ti)

+

n∑
i=1

log (λ+ λti − 2θ) .

(20)

From the expressions ∂
∂θ l(Θ; t) = 0, ∂

∂λ l(Θ; t) = 0, we get the likelihood equations

n log(λ) +
n∑
i=1

log(ti) +
n

λ− θ
− nψ(θ)−

n∑
i=1

2

λ+ λti − 2θ
= 0

and
nθ

λ
−

n∑
i=1

ti +
n

λ− θ
+

n∑
i=1

1 + ti
λ+ λti − 2θ

= 0,

where ψ(k) = ∂
∂k log Γ(k) = Γ′(k)

Γ(k) is the digamma function.
Under mild conditions (see Migon et al. (2014)) the ML estimates are asymptotically normal

distributed with a bivariate normal distribution given by

(θ̂, λ̂) ∼ N2[(θ, λ), I−1((θ, λ))] for n→∞,

where the elements of the Fisher information matrix given by

h11(θ, λ) =
n

(λ− θ)2 + nψ′(θ)− 4nE

[
1

(λ+ λti − 2θ)2

]
,

h12(θ, λ) = h21(θ, λ) = −n
λ
− n

(λ− θ)2 − 2nE

[
1 + t

(λ+ λti − 2θ)2

]
,

h22(θ, λ) =
n(θ + 1)

λ2
− n

(λ− θ)2 + nE

[(
1 + t

λ+ λti − 2θ

)2
]
,

and ψ′(k) = ∂
∂2k

log Γ(k) is the trigamma function.

3.2 Bootstrap resampling method

In this section, we considered an corrective approach to reduce the bias of the MLEs. For our
proposed model closed-form expressions for the bias are not possible since the higher-order deriva-
tives do not have closed-form expression. To overcome this problem we consider the bootstrap
resampling method proposed by Efron (1992) is a power alternative to reduce the bias of the
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MLEs specially in cases where the it is difficult to derive the analitical expression of the bias (see
Cox and Snell (1968)). This method consists in generating pseudo-samples from the original to
estimate the bias of the MLEs. Further, bias-corrected MLEs are obtained by subtraction of the
estimated bias in relation to the original MLEs.

Here, we follow the same steps as describe in Reath et al. (2018). Let t = (t1, . . . , tn)> be
a sample with size n randomly selected from the random variable T and has the distribution
function F = Fη(t). Also, let the parameter η be a function of F given by η = t(F ) and η̂
be an estimator of η based on t, that is, η̂ = s(t). The pseudo-samples t∗ = (t∗1, . . . , t

∗
n)> are

obtained by resampling with replacement the original sample t. The bootstrap replicates of η̂ is
calculated, where η̂∗ = s(t∗) and the empirical cdf (ecdf) of η̂∗ is used to estimate Fη̂ (cdf of η̂).
Let BF (η̂, η) be the bias of the estimator η̂ = s(t) given by

BF (η̂, η) = EF [η̂, η] = EF [s(t)]− η(F ).

Note that the expectation is obtained in respect to F . The bootstrap estimators of the bias
were obtained by replacing F with Fη̂, where F is generated from the original sample. Therefore,
the bootstrap bias estimate is

B̂Fη̂
(η̂, η) = EFη̂

[η̂∗]− η̂.

By takingM bootstrap samples (t∗(1), t∗(2), . . . , t∗(M)) that are generated independently from the
original sample t and the respective bootstrap estimates (η̂∗(1), η̂∗(2), . . . , η̂∗(M)) are calculated,
then we can easily obtain the approximately bootstrap expectations EFη̂

[η̂∗] by

η̂∗(.) =
1

M

M∑
i=1

η̂∗(i).

Hence, the obtained bias estimate based on M replications of η̂ is B̂F (η̂, η) = η̂∗(.) − η̂, this
implies that the bias corrected estimators obtained through by bootstrap resampling method can
be obtained by

ηB = η̂ − B̂F (η̂, η) = 2η̂ − η̂∗(.).

For the proposed model, we have ηB denoted by θ̂BOOT = (φ̂BOOT , λ̂BOOT )>.

4 Simulation Analysis

In this section, a simulation study is presented to compare the efficiency of the maximum likeli-
hood method with the bias correction approach in the presence of complete and censored data.
These comparisons are performed by computing the Bias and the mean square errors (MSE)
given by

Bias(Θi) =
1

N

N∑
j=1

(Θ̂i,j −Θi) , MSE(Θi) =
1

N

N∑
j=1

(Θ̂i,j −Θi)
2, for i = 1, 2,

where N is the number of estimates and Θ = (θ, λ). The data set is generated as follows:
1. Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;
2. Generate Xi ∼ Gamma(θ, λ), i = 1, . . . , n;
3. Generate Yi ∼ Gamma(θ + 1, λ), i = 1, . . . , n;
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Figure 4: Bias, MSEs related from the estimates of θ = 1.5 and λ = 3 for N simulated samples
under the MLEs and the Bias corrected MLES.

4. If Ui ≤ p = (λ− 2θ)/(λ− θ), then set Ti = Xi, otherwise, set Ti = Yi, i = 1, . . . , n.
The simulation study is performed under the assumption of n = (20, 35, . . ., 130), (θ, λ) =

((1.5, 3), (0.5, 3)) andN = 50, 000 . It is important to point out that, the results of this simulation
study were similar for different choices of θ and λ. Following Reath et al. (2018) we considered
M = 1, 000 to compute the bootstrap method. The programs can be obtained, upon request.
Figures 4–5 present the Bias, the MSE and the coverage probability with a 95% confidence level
of the estimates obtained through the MLEs and the Bias corrected MLES for different samples
of size.

From the obtained results, we can conclude that as there is an increase of n both Bias
and MSE tend to zero, i.e., the estimators are asymptotic efficiency. Moreover, the coverage
probability of the confidence levels tend to the nominal value assumed 0.95. Therefore, the MLE
showed to be a good estimator for the parameters of the proposed distribution.

5 An Application

In this section, the proposed distribution is fully applied in an important data set. The data
have been presented by the Medical Research Council Working Party on Misonidazole in Gliomas
(MRC Working Party on Misonidazole in Gliomas, 1983). Table 1 consists of the time in day
(divided per 1000) of 30 patients with brain cancer receiving radiotherapy alone or radiotherapy
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Figure 5: Bias, MSEs related from the estimates of θ = 0.5 and λ = 3 for N simulated samples
under the MLEs and the Bias corrected MLES.

Table 1: Data set related to 30 patients with brain cancer receiving radiotherapy alone or radio-
therapy plus the radiosensitiser misonidazol, extracted from MRC Working Party on Misonida-
zole in Gliomas (1983).
1.084 0.022 0.040 0.025 0.487 0.696 0.887 0.336 0.213 0.361
0.244 0.799 0.180 0.488 0.121 0.210 0.575 0.258 0.273 1.098
0.819 0.014 0.734 0.225 0.152 0.207 0.943 0.581 0.371 0.085

plus the radiosensitiser misonidazole.
The results obtained from the proposed model are compared with other two-parameter

distributions such as Weibull, Gamma, Lognormal and the Exponentiated Exponential (EE)
distributions (Gupta and Kundu, 2001).

The discrimination among the models are conducted by different discrimination criteria
based on log likelihood function. Such discrimination criterion methods are respectively:
• Akaike information criterion AIC = −2l(θ̂;x) + 2k;
• Corrected Akaike information criterion AICC = AIC +(2 k (k + 1))/(n− k − 1);
• Hannan-Quinn information criterion HQIC = −2 l(θ̂;x) + 2 k log (log(n));
• Consistent Akaike information criterion CAIC = −2 l(θ̂;x) + k (log(n) + 1),
where k is the number of parameters to be fitted and θ̂ is the MLEs of θ,
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Table 2: Results of AIC, AICc, HQIC, CAIC criteria and the p-value for the KS test for the
compared distributions considering the 30 patients with brain cancer receiving radiotherapy alone
or radiotherapy plus the radiosensitiser misonidazol.

Test Proposed Weibull Gamma Lognormal EE

AIC 10.398 10.456 10.931 17.719 11.040
AICc 6.843 6.901 7.376 14.163 7.484
CAIC 15.201 15.259 15.734 22.521 15.842
HQIC 11.295 11.353 11.828 18.615 11.936
P-value 0.9770 0.9624 0.9599 0.4455 0.9430

Table 3: MLE, Standard-error and 95% confidence intervals for θ and λ.

θ MLE S. error CI95%(θ)

θ 1.0878 0.0696 (0.5707; 1.6048)
λ 3.6215 0.7081 (1.9722; 5.2708)

The best model is the one which provides the minimum values of these criteria. The
Kolmogorov-Smirnov (KS) test is also considered in order to check the goodness of the fit for the
models. This procedure depends on the KS statistic Dn = supx |Fn(x)− F (x;θ)|, where supx is
the supremum of the set of distances, Fn(x) is the empirical distribution function and F (x;θ) is
the cdf of the fitted distribution. Considering a significance level of 5%, if the data comes from
F (x;θ) (null hypothesis), then hypothesis is rejected if the p-value is smaller than 0.05.

Table 2 presents the results of AIC, AICc, HQIC, CAIC criteria, for the compared distribu-
tions.

Table 3 displays the MLEs, standard-error and 95% confidence intervals for θ and λ.
In Figure 6, we have the survival function adjusted by the compared distributions and the

non-parametric survival function.
Comparing the empirical survival function with the adjusted models we observe a goodness

of the fit for the proposed model, which is confirmed from different discrimination criterion
methods as the new distribution has the minimum value for all statistics and the largest for
the P-value. Consequently, we conclude that the data related to 30 patients with brain cancer
receiving radiotherapy alone or radiotherapy plus the radiosensitizer misonidazol can be described
by our new distribution.

6 Concluding Remarks

In this paper, we introduce a new two-parameter distribution. Further, its mathematical prop-
erties were studied in detail. The hazard function of this distribution showed increasing and
bathtub hazard rate, which is uncommon for simple two-parameters distribution. The MLEs
for the parameters, its asymptotic properties and a bias corrective approach based on bootstrap
techniques were discussed. The simulation study showed that as the samples size increase, both
Bias and MSE tend to zero, i.e., the estimators are asymptotic efficiency. Finally, the practical
importance of our model was reported in a real application, the goodness of fit for the proposed
data set showed that our model returned better fitting in comparison with other well-known
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Figure 6: Survival function adjusted by the compared distributions and a non-parametric method
considering the data sets related to 30 patients with brain cancer receiving radiotherapy alone
or radiotherapy plus the radiosensitiser misonidazol.

distributions.
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