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Abstract

This paper proposes the Topp-Leone Gompertz distribution; an extension of the Gompertz dis-
tribution for modeling real life time data. The new model is obtained by transforming the
cumulative distribution function of the Gompertz random variable, while taking the Topp-Leone
as the generator. Some statistical properties of the new distribution are derived. Maximum
likelihood estimates of model parameters are also derived. A Monte Carlo simulation study is
carried out to examine the accuracy of the maximum likelihood estimate of the distribution pa-
rameters. Two real data sets are used to illustrate the applicability of the new distribution, and
the results show that the new distribution outperforms some related lifetime distributions.

Keywords generalized Gompertz; Gompertz–Lindley; linear representation.

1 Introduction

The Gompertz probability distribution is a continuous probability distribution introduced by
Gompertz (1825). The Gompertz distribution is used to study the nature of human mortality
by determining the value of life contingencies. The Gompertz distribution has been applied
in several areas of statistics where survival time is required. Tjørve and Tjørve (2017) gave a
detail review of the Gompertz distribution. The cumulative distribution function (CDF) of the
Gompertz distribution is given as

F (x) = 1 − exp

[
β

α

(
1 − eαx

)]
, x > 0, α > 0, β > 0. (1)

The corresponding probability distribution function (PDF) is given as

f(x) = βeαx exp

[
β

α

(
1 − eαx

)]
, x > 0, α > 0, β > 0. (2)

The major shortfall of Gompertz distribution in lifetime data analysis is that the hazard rate
function (hrf) is increasing for all parameter values. In order to accommodate flexibility into the
hazard rate function. El-Gohary et al. (2013) introduced the generalized Gompertz distribution
with increasing, constant, decreasing or bathtub curve failure rate. This property makes the gen-
eralized Gompertz distribution a better model in survival analysis than the classical Gompertz
distribution. Ali et al. (2014) proposed the beta Gompertz distribution with flexibility shown in
the increasing, decreasing and bathtub shape properties of the hazard rate function. Benkhelifa
(2017) proposed the beta generalized Gompertz distribution whose hazard rate function has con-
stant, increasing, decreasing or bathtub curve shape. The Modified beta Gompertz distribution
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proposed in Elbatal et al. (2019) has increasing, decreasing and bathtub hazard rate function.
Others are J. W Wu et al. (2004), Marshall et al. (1983), Ohishi (2009), El-Damcese et al.
(2015) among others.

In the recent years, statisticians have developed several methods for generating new dis-
tributions that are more flexibility. These new method have been used in literature to extend
the Gompertz distribution. Khan et al. (2017) introduced the transmuted generalized Gompertz
distribution using the concept of Transmuted-G family. Chukwu and Ogunde (2016) introduced
the Kumuaraswamy Gompertz-Makeham distribution. Benkhelifa (2016) proposed the Marshall-
Olkin extended generalized Gompertz distribution using Marshall and Olkin (1997) method. Mo-
hamed et al. (2019) considered the properties and applications of the alpha power transformation
family introduced by Mahdavi and Kundu (2017), Eghwerido et al. (2020) proposed the alpha
power Gompertz distribution and many others.

In this paper, we introduce a new distribution model called Topp-Leone Gompertz (TLGz)
distribution and some of its statistical properties which includes, quantile function, moment,
moment generating function, ordered statistics and Renyi entropy. The method of maximum
likelihood estimation is used to estimate the parameters of the TLGz distribution. Finally, the
flexibility and efficiency of the TLGz distribution over some existing ones are illustrated.

2 The Topp-Leone Gompertz Distribution

This section introduces the Topp-Leone Gompertz (TLGz) distribution using the idea of Topp-
Leone generated family of distributions introduced by Al-Shomrani et al. (2016).

Let Y be a random variable of the Topp-Leone distribution with parameter θ denoted by
Y ∼ TL(θ). Then, the CDF and PDF of the distribution are expressed as

GTL(y) = yθ(2 − y)θ, 0 < y < 1, θ > 0, (3)

and
gTL(y) = 2θyθ−1(1 − y)(2 − y)θ−1, 0 < y < 1, θ > 0. (4)

If X is a continuous random variable with CDF F (x), then the Topp-Leone generated (TL-
G) family of distribution, G(x) has the CDF defined as

G(x) =

[
F (x)

]θ[
2 − F (x)

]θ
=

[
1 −

(
F̄ (x)

)2]θ
, x > 0, θ > 0. (5)

The corresponding PDF, g(x) is written as

g(x) = 2θf(x)F̄ (x)

[
F (x)

]θ−1[
2 − F (x)

]θ−1
= 2θf(x)F̄ (x)

[
1 − (F̄ (x))2

]θ−1
, (6)

where F (x) is the CDF of the baseline distribution, F̄ (x) = 1 − F (x) and f(x) = dF (x)
dx is the

PDF of the baseline distribution. Substituting Equation (1) into Equation (5), we obtain the
CDF of the Topp-Leone Gompertz (TLGz) distribution as

G(x) =

{
1 − exp

[
2β

α

(
1 − eαx

)]}θ
, β > 0, α > 0, θ > 0, x > 0. (7)
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Figure 1: Plots of TLGz density function for different parameter values.

The corresponding probability density function is obtained by substituting Equation (2) into
Equation (6) as;

g(x) = 2βθeαx exp

[
2β

α

(
1 − eαx

)]{
1 − exp

[
2β

α

(
1 − eαx

)]}θ−1
, β > 0, α > 0, θ > 0, x > 0.

(8)
Figure 1 shows the plots of the TLGz density for some fixed parameter values. These density

plots show that the TLGz distribution can be unimodal, right skewed and decreasing.

2.1 The Survival and Hazard Rate Function

The reliability function of the TLGz distribution is given as

S(x) = 1 −G(x) = 1 −
{

1 − exp

[
2β

α

(
1 − eαx

)]}θ
. (9)

The hazard rate function is obtained as

h(x) =
f(x)

S(x)
=

2βθeαx exp

[
2β
α

(
1 − eαx

)]{
1 − exp

[
2β
α

(
1 − eαx

)]}θ−1
1 −

{
1 − exp

[
2β
α

(
1 − eαx

)]}θ . (10)



Topp–Leone Gompertz Distribution 785

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

x

H
R

F
α=0.3, β=0.50, θ=2.0

α=1.2, β=0.10, θ=3.0

α=1.5, β=0.05, θ=0.3

α=0.3, β=0.50, θ=10

α=2.0, β=0.08, θ=0.2

α=0.2, β=1.00, θ=5.0

Figure 2: Plots of TLGz hazard rate function for different parameter values.

Figure 2 shows the plots of the TLGz hazard rate function for some fixed parameter values.
The hazard rate function plots show that the TLGz distribution can be bathtub, concave and
convex increasing.

2.2 Expansion of TLGz CDF and PDF

Using the binomial series expansion defined as (1 − z)c =
∑∞

i=0

(
c
i

)
(−1)izi, then we can express

the CDF of TLGz distribution in (3) as

G(x) =

∞∑
i=0

(
θ

i

)
(−1)ie

2β
α
ie−

2β
α
ieαx

=

∞∑
i=0

∞∑
j=0

(
θ

i

)
(
2β

α
i)j

(−1)i+j

j!
e

2β
α
iejαx,

(11)

since etx =
∑∞

i=0
(tx)i

i! .
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Similarly, the PDF of TLGz distribution can be represented as

g(x) =
∞∑
i=0

(
θ − 1

i

)
(−1)ieαxe

2β
α
(1+i)e−

2β
α
(1+i)eαx

=2βθ
∞∑
i=0

∞∑
j=0

(
θ − 1

i

)
(
2β

α
)je

2β
α
(1+i) (−1)i+j(1 + i)j

j!
eα(i+j)x.

(12)

3 Mathematical Properties

In this section, some mathematical properties of the newly proposed Topp-Leone Gompertz distri-
bution were examined. These properties include quantile, the raw moments, moment generating
function, probability weighted moments, entropies and the distribution of order statistics.

3.1 Quantile Function

The quantile function is obtained by inverting the CDF of the TLGz distribution. Given that
0 < u < 1, then the quantile function of a random variable X is given as

Q(u) =
1

α
log

{
1 − α

2β
log

(
1 − u

1
θ

)}
. (13)

Hence, for u = 0.5, we obtain the median of the distribution as

Q(0.5) =
1

α
log

{
1 − α

2β
log

(
1 − 0.5

1
θ

)}
. (14)

The quantile function , in Equation (13) is used to simulate random numbers X = u from
TLGz distribution where U is a random variable following the uniform distribution over (0, 1).

The skewness and kurtosis of the TLGz can also determine from Q(u) using the Bowley (B)
skewness and Moors kurtosis (M) respectively defined as

B =
Q(34) +Q(14) − 2Q(12)

Q(34) −Q(14)
,

and

M =
Q(78) −Q(38) −Q(58) +Q(18)

Q(34) −Q(14)
.

3.2 Moments

Given that r is a non-negative integer, then the rth moment about the origin of a continuous
random variable X is defined by µ′r = E(Xr) =

∫∞
−∞ x

rg(x)dx. Using the PDF as expressed in
Equation (12), we have

µ′r = 2βθ
∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)j (−1)i+k(1 + i)j

j!

∫ ∞
0

xreα(1+k)xdx.

By using change of variable as u = −α(1 + k)x and x = −u
α(1+k) , we obtain

µ′r = 2βθ
∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)j (−1)i+k(1 + i)j

j!

[
−u

α(1 + k)

]r+1 ∫ ∞
0

ureudu. (15)
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3.3 Moment Generating Function

The moment generating function of a random variable X is the formula (function) used to find
the moments of the random variable. Mathematical definition of moment generating function of
a random variable X with PDF g(x) is defined as MX(z) = E(ezx) =

∫∞
−∞ e

zxg(x)dx. Thus, by
Equation (12), we have the TLGz distribution expressed as

MX(z) = E(ezx) = 2βθ
∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)j (−1)i+k

j!

∫ ∞
0

e[z+α(1+k)]xdx.

Using change of variable as u = −α(1 + k)x and x = −u
α(1+k) , then

E(ezx) =2βθ

∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)j (−1)i+k+1(1 + k)j

j![z + α(1 + k)]

∫ ∞
0

eudu.

=2βθ

∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)j (−1)i+k+1(1 + k)j

j![z + α(1 + k)]
.

(16)

3.4 Renyi Entropy

Entropy is the study of uncertainty with respect to a random variable. If X is a random variable
under study with PDF g(x) , then the Renyi entropy of X is defined as

IR(s) =
1

1 − s
log φ(s), s > 0,

where,

φ(s) =

∫ ∞
0

gs(x)dx = (2βθ)s
∫ ∞
0

esαxe
2βs
α

(1−eαx)
{

1 − exp

[
2β

α
(1 − eαx)

]}s(θ−1)
dx.

However, using binomial expansion and power series expansion, we have

φ(s) = (2βθ)s
∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)k (−1)i+k(s+ 1)j

j!

∫ ∞
0

ekαxdx.

Thus,

IR(s) =
1

1 − s
log

{
(2βθ)s

∞∑
i=0

i∑
j=0

j∑
k=0

(
θ − 1

i

)(
j

k

)(
2β

α

)k (−1)i+k+1(s+ 1)j

j!kα

∫ ∞
0

ekαxdx

}
.

(17)

3.5 Distribution of Order Statistics

Suppose X1, · · · , Xn are random variables from TLGz distribution and X1:n, · · · , Xn:n are the
corresponding order statistics of the random sample. Then the probability density function of
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the kth order statistics X = Xk:n, k = 1, · · · , n, denoted by fk:n(x), for 1 ≤ x ≤ n is defined as

fk:n(x) =
n!

(k − 1)!(n− k)!
f(x)F k−1(x)

[
1 − F (x)

]n−k
=

n!

(k − 1)!(n− k)!

n−k∑
i=0

(
n− k

i

)
(−1)if(x)

[
1 − F (x)

]k+i−1
,

(18)

where f(x) and F (x) are the PDF and CDF of the random variable X, respectively. Now,
Substituting Equation (7) and Equation (8) into Equation (18), we obtain the density function
of the order statistics for TLGz distribution as

fk:n(x) =
2βθn!

(k − 1)!(n− k)!

n−k∑
i=0

θ+k+i−2∑
j=0

j∑
m=0

m∑
p=0

(
n− k

i

)(
θ + k + i− 2

j

)(
2β

α

)k
×(−1)i+m+1[α(1 + i)]pxp

m!p!
.

(19)

4 Statistical Inference

In this section, we estimate the parameters of the proposed Topp-Leone Gompertz distribution
by using the maximum likelihood estimate and a simulation study is performed to investigate the
efficiency of the maximum likelihood estimates (MLEs) of the proposed Topp-Leone Gompertz
distribution.

4.1 Maximum Likelihood Estimation

In this section, the estimation of the TLGz parameters through the maximum likelihood esti-
mation method was obtained. Suppose a random sample x1, x2, x3, · · · , xn of size n follows a
TLGz distribution, then the maximum likelihood function is given as

L =

n∏
i=1

{
2βθeαxie

2β
α
(1−eαxi )

[
1 − e

2β
α
(1−eαxi )

]θ−1}
,

and the log-likelihood function `n = log(L) becomes

`n = n log(2βθ) + α
n∑
i=1

xi +
2β

α

n∑
i=1

log(1 − eαxi) + (θ − 1)
n∑
i=1

log

[
1 − e

2β
α
(1−eαxi )

]
. (20)

The partial derivatives of Equation (20) with respect to the parameters α, β and θ are

∂`n
∂α

=
n∑
i=1

xi −
2β

α

n∑
i=1

{
xie

αxi +
1

α

(
1 − eαxi

)}

− (θ − 1)

n∑
i=1

2β
α

{
1
α(1 − eαxi) + xie

αxi

}
e

2β
α
(1−eαxi )

1 − e
2β
α
(1−eαxi )

,

∂`n
∂β

=
n

β
+

2

α

n∑
i=1

(1 − eαxi) − (θ − 1)

n∑
i=1

2
α(1 − eαxi)e

2β
α
(1−eαxi )

1 − e
2β
α
(1−eαxi )

,
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∂`n
∂θ

=
n

θ
+

n∑
i=1

log

[
1 − e

2β
α
(1−eαxi )

]
.

The MLEs(α̂, β̂, θ̂) for (α, β, θ) are obtained by setting the score function to zero, U(Φ) = 0

and solve the system of equation simultaneously where U(Φ) =

(
∂`n
∂α ,

∂`n
∂β ,

∂`n
∂θ

)T
= 0.

The non-linear system of equation is solved iteratively using R statistical package to obtain
the MLE for the unknown parameters. The Newton-Raphson iterative method can easily be used
since the second partial derivative exist. This numerical estimates of Φ̂ = (α̂, β̂, θ̂) are obtained
with R statistical package.

The approximate confidence interval, confidence region and testing hypothesis of (α, β, θ)
can be determined using the MLEs (α̂, β̂, θ̂) .

4.2 Simulation Study

In this section, we carry out a simulation study to investigate the performance and accuracy of
maximum likelihood estimates of TLGz distribution model parameters for various combinations
of 6 sample sizes considering two sets of parameter values. The quantile function was used to
generate random data from TLGz distribution. In each simulation, 10,000 samples of sizen =

Table 1: Simulation Results: - Mean, Bias and RMSE 10,000 MLEs of TLGz for some fixed
parameter values.

I II

n Parameter Mean Bias RMSE Parameter Mean Bias RMSE

50 α = 1.3 1.3669 0.0669 0.5425 α = 3.0 3.0908 0.0908 1.0305
β = 0.5 0.5491 0.0491 0.2784 β = 0.7 0.7912 0.0912 0.4251
θ = 2.0 2.2574 0.2574 1.0533 θ = 1.5 1.6868 0.1868 0.7370

75 α = 1.3 1.3354 0.0354 0.4318 α = 3.0 3.0434 0.0434 0.8416
β = 0.5 0.5352 0.0352 0.2167 β = 0.7 0.7670 0.0670 0.3415
θ = 2.0 2.1651 0.1651 0.7286 θ = 1.5 1.6236 0.1236 0.5203

100 α = 1.3 1.3278 0.0278 0.3706 α = 3.0 3.0341 0.0341 0.7342
β = 0.5 0.5244 0.0244 0.1796 β = 0.7 0.7485 0.0485 0.2814
θ = 2.0 2.1198 0.1198 0.5751 θ = 1.5 1.5911 0.0911 0.4098

150 α = 1.3 1.3239 0.0239 0.3033 α = 3.0 3.0306 0.0306 0.5976
β = 0.5 0.5141 0.0141 0.1518 β = 0.7 0.7287 0.0287 0.2308
θ = 2.0 2.0738 0.0738 0.4746 θ = 1.5 1.5544 0.0544 0.3248

200 α = 1.3 1.3158 0.0158 0.2595 α = 3.0 3.0305 0.0306 0.5196
β = 0.5 0.5114 0.0114 0.1224 β = 0.7 0.7190 0.0190 0.1896
θ = 2.0 2.0554 0.0554 0.3734 θ = 1.5 1.5337 0.0357 0.2573

300 α = 1.3 1.3108 0.0108 0.2218 α = 3.0 3.0206 0.0206 0.4349
β = 0.5 0.5070 0.0070 0.1045 β = 0.7 0.7114 0.0114 0.1560
θ = 2.0 2.0314 0.0314 0.3003 θ = 1.5 1.5208 0.0208 0.2055

500 α = 1.3 1.3021 0.0021 0.1677 α = 3.0 3.0080 0.0080 0.3366
β = 0.5 0.5062 0.0062 0.0816 β = 0.7 0.7088 0.0088 0.1224
θ = 2.0 2.0253 0.0253 0.2415 θ = 1.5 1.5154 0.0154 0.1633
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50, 75, 100, 150, 200, 300 was generated for some sets of parameter values I : α = 1.3, β = 0.5, θ =
2.0 and II : α = 3.0, β = 0.7, θ = 1.5. R Statistical software was used to compute the following
quantities in this simulation study:

(i) Mean =
1

10, 000

10,000∑
i=1

Φ̂,

(ii) Bias =
1

10, 000

10,000∑
i=1

(Φ̂ − Φ),

and

(iii) Root Mean Square Error (RMSE) =

√√√√ 1

10, 000

10,000∑
i=1

(Φ̂ − Φ)2,

where Φ̂ = (α̂, β̂, θ̂) is an estimate of Φ = (α, β, θ).
From the simulation results (see Table 1), it is clearly seen that as the sample size increases,

the estimated mean gets closer to the true parameter value. The biases decrease and the RMSEs
decrease toward zero. This shows the efficiency of the maximum likelihood estimation method
for the parameters of the Topp-Leone Gompertz (TLGz) distribution model.

5 Applications

In this section, applications to lifetime data sets were illustrated to examine the efficiency and
superiority of the TLGz distribution in modeling real data practice. The TLGz distribution
model is fitted to the selected data sets and compared to the fits of Kumaraswamy Gompertz
(KGz), Weibull Gompertz (WGz), Weibull Frechet (WFr) and Transmuted Gompertz (TGz)
distributions.

The negative log-likelihood (−`), Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Cramer–von Mises (W ∗) and Anderson–Darling (A∗) values are computed and
compared. It follows that the model with the smallest criteria values has the best fit. Also, the
Kolmogorov-Smirnov (KS) statistic and the p-value were also examined.

However, the values of AIC, BIC, W ∗ and A∗ sometimes are influenced by the number of
parameters in the given distribution. Therefore, the KS statistic and the p-value are sufficient
criteria for comparing models. The model with the lowest KS value and highest p-value has the
best fit.

5.1 Data Set 1

The given data represents the breaking stress of carbon fibers (in Gba) as observed and reported
by Nichols and Padgett (2006) as used in Efe-eyefıa et al. (2020):
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28,
3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25,
4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43,
2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53
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Table 2: The MLEs and S.Es (in parentheses) for Data Set 1 Parameter Estimates

Model α̂ β̂ θ̂ λ̂

TLGz 3.3580 0.2047 0.3432
(1.0651) (0.0731) (0.1172)

KGz 1.9584 0.1609 0.9779 0.5484
(0.5356) (0.0175) (0.00343) (0,00341)

WGz 0.2403 2.7550 0.4887 −0.2706
(3.8765) (2.4725) (2.2264) (0.4400)

TGz 0.7346 0.0376 0.9008
(0.1756) (0.0096) (0.0845)

Table 3: Summary Statistics for the Data Set 1
Model −` AIC BIC W ∗ A∗ KS p-value

TLGz 141.3899 288.7799 296.5954 0.0721 0.4266 0.06337 0.8114
KGz 146.9744 301.9488 312.3695 0.0741 0.5619 0.1221 0.1009
WGz 141.2633 290.5265 300.9472 0.0660 0.3872 0.0640 0.8064
TGz 147.0786 300.1573 307.9728 0.1262 1.0366 0.0801 0.5411

5.2 Data Set 2

Data Set 2 consists of 63 observations of the strengths of 1.5 cm glass fibers obtained by workers
at the UK National Physical Laboratory, reported by Smith and Naylor (1987) and used in
Eghwerido et al. (2020), Eghwerido et al. (2020b), Eghwerido et al. (2020a), and Zelibe et al.
(2019):
0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39,
1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61,
1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73,
1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

Table 2 and Table 4 present the MLEs of the unknown parameters with the corresponding
standard errors (S.Es) enclosed in parentheses for Data Set 1 and 2 respectively. Table 3 and

Table 4: The MLEs and S.Es (in parentheses) for Data Set 2 Parameter Estimates

Model α̂ β̂ θ̂ λ̂

TLGz 1.7421 0.0224 2.7473
(0.6408) (0.0209) (0.5477)

KGz 1.5553 0.2144 0.0974 3.1153
(0.4226) (0.0484) (0.0181) (0.0147)

WGz 0.0317 3.2269 0.8327 -0.0021
(0.0846) (1.3041) (0.5645) (0.3602)

WFr 3.6121 25.1859 0.1623 0.2130
(18.9309) (NaN) (NaN) (NaN)
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Table 5: Summary Statistics for the Data Set 2
Model −` AIC BIC W ∗ A∗ KS p-value

TLGz 14.1657 34.3314 40.7608 0.1699 0.9511 0.1353 0.1989
KGz 14.7378 37.4757 46.0482 0.1799 1.0097 0.1520 0.1086
WGz 14.4165 36.8331 45.4056 0.1808 1.0123 0.1387 0.1764
WFr 15.3980 38.7960 47.3685 0.2471 1.3565 0.1552 0.0960
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Figure 3: The fitted TLGz density and other
densities for the first data.
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Figure 4: The fitted CDF of the TLGz density
and other densities for the first data.
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Figure 5: The fitted TLGz density and other
densities for the second data.
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and other densities for the second data.
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Table 5 shows the statistics: AIC, BIC,W ∗ , A∗, KS and p-Values for all the models considered.
In Table 3 and Table 5, it is observed that TLGz has the highest p-Values and the lowest

KS values for Data Set 1 and 2 respectively. This shows that TLGz distribution performs better
in fitting these data sets.

However, the empirical density functions of the TLGz model compared with some densities
are presented in Figure 3 and Figure 5 for Data Set 1 and Data Set 2 respectively. While Figure 4
and Figure 6 are the empirical cumulative distribution of the TLGz distribution compared with
some CDFs. These plots indicated that the plot of TLGz model yields a better fit for both data
sets.

6 Concluding Remark

This paper introduced a new distribution called “Topp-Leone Gompertz (TLGz) distribution”
using the Topp-Leone characterization introduced by Al-Shomrani et al. (2016). Some of its
mathematical properties such as the quantile, moment, moment generating function, Renyi en-
tropy and the distribution of order statistics were derived, studied and examined. The maximum
likelihood estimates of the three parameters were obtained. Two data sets were fitted to the pro-
posed model to illustrate the flexibility of TLGz distribution in life time analysis. The results
shown that the TLGz model can be used as alternative model in life time analysis since is a
strong competitor. More so, the newly proposed model could also be used to model life time sur-
vival processes where bathtub hazard rate is required. Furthermore, Bayesian reliability analysis
for the proposed model could be a subject for further research for censored, Type 1 and Type 2
data.
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