
Journal of Data Science 18 (4), 581–605
October 2020

DOI: 10.6339/JDS.202010_18(4).0001

Wavelet-Based Robust Estimation of Hurst Exponent with
Application in Visual Impairment Classification

Chen Feng∗1, Yajun Mei1, and Brani Vidakovic2

1H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

2Department of Statistics, Texas A&M University, College Station, TX, USA

Abstract

Pupillary response behavior (PRB) refers to changes in pupil diameter in response to simple or
complex stimuli. There are underlying, unique patterns hidden within complex, high-frequency
PRB data that can be utilized to classify visual impairment, but those patterns cannot be
described by traditional summary statistics. For those complex high-frequency data, Hurst
exponent, as a measure of long-term memory of time series, becomes a powerful tool to detect
the muted or irregular change patterns. In this paper, we proposed robust estimators of Hurst
exponent based on non-decimated wavelet transforms. The properties of the proposed estimators
were studied both theoretically and numerically. We applied our methods to PRB data to extract
the Hurst exponent and then used it as a predictor to classify individuals with different degrees of
visual impairment. Compared with other standard wavelet-based methods, our methods reduce
the variance of the estimators and increase the classification accuracy.
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1 Introduction

Visual impairment is defined as a functional limitation of the eyes or visual system. It can cause
disabilities by significantly interfering with one’s ability to function independently, to perform
activities of daily living, and to travel safely through the environment, see Geraci et al. (1997);
West et al. (2002). Many causes of severe visual impairment are hard to cure, however, there are
conditions for which medical or surgical treatment will lessen the severity or progression of the
vision loss, for example, recent advances in the treatment of age-related macular degeneration
(AMD), see Rosenfeld et al. (2006); Fletcher and Schuchard (2006); Avery et al. (2006). Precise
classification of different degrees of visual impairment for AMD patients becomes increasingly
important for the sake of early intervention. It has been suggested by Moloney et al. (2006) that
the high-frequency pupillary response behavior (PRB) data can be useful in visual impairment
classification. PRB refers to changes in pupil diameter in response to simple or complex stimuli,
and the PRB data used in our study was measured from older adults, including two groups
diagnosed with AMD maintaining different ranges of visual acuities, and one visually healthy
control group. Examples of PRB data from those three groups are shown in Figure 1. Moloney
et al. (2006) indicated that there may be underlying unique patterns hidden within complex PRB
data, and these patterns reveal the intrinsic individual differences in cognitive, sensory and motor
functions. However, the proper description and interpretation of PRB are not straightforward,
since it is affected by a variety of factors, including the ambient light, fatigue, and medication use.
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Figure 1: Examples of PRB data from three groups: Up (healthy, control), middle (AMD group
I, mild case), down (AMD group II, severe case).

In fact, high-frequency, time series data from various sources often possess hidden patterns that
reveal the effects of underlying functional differences, but such patterns cannot be explained
by basic descriptive statistics, traditional statistical models, or global trends. Thus powerful
analytical tools are needed to detect these muted or irregular change patterns for those complex
high-frequency data, like PRB.

One powerful tool is the Hurst exponent, denoted by H in the sequel. It quantifies the
long memory, regularity, self-similarity, and scaling in a time series, and has been used as an
important feature in many applications, see Engel et al. (2009); Gregoriou et al. (2009); Katul
et al. (2001); Park and Willinger (2000); Woods et al. (2016); Zhou (1996). To be more concrete,
a stochastic process, {X (t) , t ∈ R} is self-similar with Hurst exponent H if X (t)

d
= λ−HX (λt),

for any λ ∈ R+. Here the notation d
= means the equality in all finite-dimensional distributions.

Hurst exponent describes the rate at which autocorrelations decrease as the lag between two
realizations in a time series increases. A value H in the range 0-0.5 indicates a zig-zagging
intermittent time series with long-term switching between high and low values in adjacent pairs.
A value H in the range 0.5 to 1 indicates a time series with long-term positive autocorrelations,
which preserves trends on a longer time horizon and gives a time series more regular appearance.

One widely used example of self-similar Gaussian process is the fractional Brownian motion
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Figure 2: Examples of 1-D fBm with different Hurst exponent H.

(fBm), which was first described by Kolmogorov (1940) and formalized by Mandelbrot and
Van Ness (1968), also see Abry et al. (2003); Abry (2003). The fBm is a continuous-time
Gaussian process X(t), which starts at zero, has expectation zero for all t, and has the following
covariance function:

E[X(t)X(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H).

The 1-D fBm is our proposed model for PRB data. Figure 2 shows three examples of 1-D fBm
with different Hurst exponents.

One popular method to estimate Hurst exponent from fBm is the multiresolution analysis
through wavelet transformations, see Abry et al. (2000, 1995, 2009). The idea is to explore
the fact that H is linearly correlated to wavelet coefficients dj ’s at level j on the log-scale,
and the following two estimation methods of H have been proposed: 1) Veitch & Abry (VA)
method in Abry et al. (2000) by weighted least square regression on the level-wise log2

(
d̄2j

)
; 2)

Soltani, Simard, & Boichu (SSB) method in Soltani et al. (2004) by first defining a mid-energy
as Dj,k =

(
d2j,k + d2j,k+Nj/2

)/
2, then taking the mean of the logarithm of mid-energies, and last

applying weighted least square regression. Later Shen et al. (2007) demonstrated that the SSB
method yielded more accurate estimators than the VA method since it took the logarithm first
and then averaged. Unfortunately, both methods are sensitive to outlier coefficients and outlier
multiresolution levels, inter and within level dependences, and distributional contaminations,
thus, it is important to robustify them.

The robust estimation of Hurst exponent H has recently become a topic of interest, see
Franzke et al. (2012); Park and Park (2009); Shen et al. (2007); Sheng et al. (2011). Three
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robust estimation methods have been developed. The first one is the Theil-type regression (TT)
method in Hamilton et al. (2011), which modified the VA method by replacing the weighted least
square regression with the Theil-type weighted regression in Theil (1992) to make it less sensitive
to outlier levels. The second and third methods are MEDL and MEDLA proposed in Kang and
Vidakovic (2017), where the median, not mean, was used for level-wise wavelet coefficients. To
be concrete, the MEDL method took median of log d2j , and then applied linear regression to
estimate H. The MEDLA method is very similar to MEDL, but it took median of sampled
log
((
d2jk1 + d2jk2

)
/2
)
. The difference between these two methods is that MEDL took logarithm

on squared wavelet coefficients, while MEDLA was close to the concept in SSB method that
paired and averaged wavelet coefficients prior to taking logarithm. Although median is outlier-
resistant, it can behave unexpectedly as a result of its non-smooth character. The fact that the
median is not “universally the best outlier-resistant estimator" provides a practical motivation for
examining alternatives that are intermediate in behavior between the very smooth but outlier-
sensitive mean and the very outlier-insensitive but non-smooth median.

In this article, we propose to robustly estimate the Hurst exponent from the fBm model,
where the mean or median of the wavelet coefficients is replaced by a general trimean estimator
that is inspired by Tukey (1977) and Gastwirth and Cohen (1970). Here the general trimean
estimator is defined as a weighted average of the median and two quantiles symmetric about the
median, which balances the tradeoff between median value and extreme values. It turns out that
this will yield a robust estimator of the Hurst exponent from PRB data, which in turn allows us
to efficiently classify PRB into groups with different degrees of visual impairment.

The remaining structure is as follows. Section 2 introduces the general trimean estimators;
Section 3 describes estimation of Hurst exponent using the general trimean estimators and derives
the asymptotic distributions of the proposed estimators. Section 4 provides the simulation results
and compares the performance of the proposed methods to other standardly used, wavelet-based
methods. The proposed methods are illustrated using the real PRB data for visual impairment
classification in Section 5. The paper is concluded with a summary and discussion in Section 6.
The detailed proofs of all theorems are provided in the Appendix.

2 General Trimean Estimators

In this section, we propose a general trimean estimator under the point estimation context, which
will be used later for robust estimation of Hurst exponent.

Let X1, ..., Xn be i.i.d. continuous random variables with pdf f(x) and cdf F (x) with mean
µ. For 0 < p < 1, let Yp = Xbnpc:n denote a sample pth quantile, where bnpc denotes the greatest
integer that is less than or equal to np. In the context of outliers, a remarkably efficient robust
estimator of population mean µ is Tukey’s trimean estimator in Tukey (1977), defined as

µ̂T =
1

4
Y1/4 +

1

2
Y1/2 +

1

4
Y3/4. (1)

Another robust estimator is the Gastwirth’s estimator in Gastwirth and Cohen (1970),

µ̂G = 0.3 Y1/3 + 0.4 Y1/2 + 0.3 Y2/3. (2)

Here we propose a general trimean estimator, which is defined as a weighted average of the
distribution’s median and its two quantiles Yp and Y1−p, for p ∈ (0, 1/2):

µ̂ =
α

2
Yp + (1− α) Y1/2 +

α

2
Y1−p. (3)
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The weights for the two quantiles are the same for Yp and Y1−p, and α ∈ [0, 1]. This is equivalent
to the weighted sum of the median and the average of Yp and Y1−p with weights 1− α and α:

µ̂ = (1− α) Y1/2 + α

(
Yp + Y1−p

2

)
.

This general trimean estimator is more robust then mean but smoother than the median. It
turns out that Tuckey’s trimean estimator and Gastwirth’s estimator are two special cases. To
be specific, α = 1/2, p = 1/4 in Tuckey’s trimean estimator, and α = 0.6, p = 1/3 in Gastwirth’s
estimator.

To derive its asymptotic distribution, we need to first define some notations for the popula-
tion distribution. Let 0 < p < 1 and ξp denotes the pth quantile of F , so that ξp = inf{x|F (x) ≥
p}. If F is monotone, the pth quantile is simply defined as F (ξp) = p. Moreover, define

A =
[α

2
1− α α

2

]
, (4)

ξ =
[
ξp ξ1/2 ξ1−p

]T
, (5)

and the asymptotic covariance matrix of y =
[
Yp Y1/2 Y1−p

]T is

Σ = (σij)r×r , with σij =
pi (1− pj)

f (xpi) f
(
xpj
) , i ≤ j, (6)

see DasGupta (2008).
Now we are ready to present the asymptotic properties of our proposed general trimean

estimator µ̂ in (3).

Lemma 1. As n→∞, for µ̂ in (3),
√
n(µ̂−A · ξ) approx∼ N

(
0, AΣA−1

)
(7)

The proof of Lemma 1 follows directly from the asymptotic joint distribution of the order
statistics, and thus are omitted.

3 Robust Estimations of Hurst Exponent

In this section, we propose two different robust methods for estimating Hurst exponent H under
the fBm model through wavelet transformations.

For that purpose, let us first provide a brief background on non-decimated wavelet transforms
(NDWT), also see Nason and Silverman (1995); Vidakovic (2009); Percival and Walden (2006).
The NDWT are redundant transforms because they are performed by repeated filtering with a
minimal shift, or a maximal sampling rate, at all dyadic scales. Subsequently, the transformed
signal contains the same number of coefficients as the original signal at each multiresolution
level. To be more specific, any square integrable function f(x) ∈ L2(R) can be expressed in the
wavelet domain as

f(x) =
∑
k

cJ0,kφJ0,k(x) +
∞∑
j≥J0

∑
k

dj,kψj,k(x),

where cJ0,k denotes coarse coefficients, dj,k indicates detail coefficients, φJ0,k(x) represents scaling
functions, and ψj,k(x) signifies wavelet functions. For specific choices of scaling and wavelet
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Figure 3: Autocorrelation plot of mid-energies.

functions, the basis for NDWT can be formed from the atoms φJ0,k(x) = 2J0/2φ
(
2J0 (x− k)

)
and

ψj,k(x) = 2j/2ψ
(
2j (x− k)

)
, where x ∈ R, j is a resolution level, J0 is the coarsest level, and k is

the location of an atom. A principal difference between NDWT and orthogonal discrete wavelet
transforms (DWT) is the sampling rate, and notice that atoms for NDWT have the constant
location shift k at all levels, yielding the finest sampling rate on any level. The coefficients are
cJ0,k =

∫
f(x) φJ0,k(x)dx and dj,k =

∫
f(x) ψj,k(x)dx. In a J-depth decomposition of a fBm of

size N , a NDWT generates J detail levels and one smooth level, therefore containing N×(J + 1)
wavelet coefficients, N in each level.

In the Hurst exponent estimation literature, most research was based on the standard or-
thogonal discrete wavelet transforms (DWT), but NDWT turns out to have several advantages
when employed for Hurst exponent estimation: 1) Input signals and images of arbitrary size
can be processed due to the absence of decimation; 2) as a redundant transform, the NDWT
increases the accuracy of the scaling estimation; 3) least square regression can be fitted to esti-
mate H instead of weighted least square regression since the variances of the level-wise derived
distributions based on logged NDWT coefficients do not depend on level; 4) local scaling can be
assessed due to the time-invariance property. As we will discuss later, the price we pay is that
the dependence of coefficients in NDWT is more profound than in DWT.

At high level, we propose to estimate Hurst exponent from NDWT as follows. At each
detail level j, we generate N/2 mid-energies as Dj,k =

(
d2j,k + d2j,k+N/2

)
/2, for k = 1, 2, ..., N/2.

Then we have two different approaches to robustly estimate Hurst exponent: One is based on
mid-energies Dj,k themselves, and the other is based on the logarithm of mid-energies logDj,k.
In each approach, we first calculate the general trimean estimator on Dj,k or logDj,k, and then
derive its asymptotic distribution, which depends on Hurst exponent H and allows us to provide
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a robust estimation of H.
Here, we use the mid-energies instead of the raw wavelet coefficients. The concept of mid-

energies was first introduced by Soltani et al. (2004) to reduce the estimation bias caused by the
non-normality of log2 d̄

2
j and correlation among detail wavelet coefficients. Soltani et al. (2004)

showed that level-wise averages of log2Dj,k were asymptotically normal with the mean −(2H +
1)j+C, which could be used to estimate H by regression. However, the asymptotic distribution
was conducted under the independent assumption between mid-energies. Unfortunately, for a
fixed detail level j, these mid-energies or the logarithm versions are generally dependent. The
good news is that their autocorrelations decay exponentially as their distance increases, see
Figure 3. Thus for the practice purpose, we will be able to reduce such dependency by increasing
the distance between two consecutive points.

To be specific, we sample every M points from the original N/2 mid-energies or their loga-
rithm versions, resulting in M groups in each level j. Note that at each level j, the M groups
are generated by switching the starting point from Dj,1 (logDj,1) to Dj,M (logDj,M ). Since
the distances are large, the (N/2) /M sampled values within each group can be thought of as
independent for the practice purpose. The general trimean estimators are then calculated from
each of the M groups. Note that M must be divisible by N/2.

Group 1:
{
Dj,1, Dj,1+M , Dj,1+2M , ..., Dj,(N/2−M+1)

}({
log (Dj,1) , log (Dj,1+M ) , ..., log

(
Dj,(N/2−M+1)

)})
Group 2:

{
Dj,2, Dj,2+M , Dj,2+2M , ..., Dj,(N/2−M+2)

}({
log (Dj,2) , log (Dj,2+M ) , ..., log

(
Dj,(N/2−M+2)

)})
...

Group M:
{
Dj,M , Dj,2M , Dj,3M , ..., Dj,N/2

}({
log (Dj,M ) , log (Dj,2M ) , ..., log

(
Dj,N/2

)})
The parameter M affects the efficiency of dependency reductions. Figure 4 shows the auto-

correlation plot of grouped mid-energies following the above procedure, with M = 8. As can be
seen, our procedure efficiently reduces the effect of the correlation among original mid-energies.

In practice, parameter M could be either user specified or determined via grid search based
on different needs and criterion. In our application to classify individuals with different degrees
of visual impairment, M is chosen to minimize the misclassification rate on the testing data.

Below we will present our proposed two methods in two subsections. Section 3.1 introduces
the general trimean of the mid-energy (GTME) method, and Section 3.2 discusses the general
trimean of the logarithm of mid-energy (GTLME) method. These two methods are closely
related, except switching the order of logarithm and general trimean estimator.

3.1 General Trimean of the Mid-energy (GTME) Method

Our proposed GTME method involves the following three steps:
1) Compute the general trimean estimators µ̂j,i on{

Dj,i, Dj,i+M , Dj,i+2M , ..., Dj,(N/2−M+i)

}
:= D(j, i),

where D(j, i), for 1 ≤ j ≤ J and 1 ≤ i ≤ M , is the ith group of mid-energies at level j in a
J-level NDWT of a fBm of size N with Hurst exponent H.
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Figure 4: Autocorrelation plot of grouped mid-energies.

2) For each i = 1, 2, ...M , calculate the regression slope β̂i in the least square linear regression
on pairs (j, log2 (µ̂j,i)), for 1 ≤ J1 ≤ j ≤ J2 ≤ J .

3) Estimate the Hurst exponent by

Ĥ1 =
1

M

M∑
i=1

(
− β̂i

2
− 1

2

)
= − β̄

2
− 1

2
, (8)

where β̄ = 1
M

∑M
i=1 β̂i is the average of regression slopes over the M groups for i = 1, 2, ...M .

The motivation of GTME method is based on the asymptotic distribution of µ̂j,i from
Lemma 1: √

N (µ̂j,i − c(α, p)λj)approx N
(
0, 2Mf(α, p)λ2j

)
, (9)

where

c (α, p) =
α

2
log

(
1

p (1− p)

)
+ (1− α) log 2,

f (α, p) =
α(1− 2p)(α− 4p)

4p(1− p)
+ 1, and (10)

λj = σ2 · 2−(2H+1)j .

Here σ is the standard deviation of wavelet coefficients from level 0. Hence, log2 (µ̂j,i) is linearly
related to (2H + 1)j, which allows us to use the slopes β̂i to estimate 2H + 1 and leads to the
proposed estimator in (8).

For our proposed GTME method in (8), its asymptotic properties are established in the
following theorem, whose proof is postponed in the Appendix:
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Theorem 3.1. The estimator Ĥ1 follows the asymptotic normal distribution
√
N
(
Ĥ1 −H

)
approx∼ N (0, V1) . (11)

The asymptotic variance V1 is a constant number,

V1 =
6f(α, p)

(log 2)2(c (α, p))2q(J1, J2)
, (12)

q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2),

where c(α, p) and f(α, p) are given in (10).

There are different ways to determine the tuning parameters α and p in general trimean
estimator. One could use the settings in Tukey’s trimean estimator (α = 1/2, p = 1/4) or in
Gastwirth’s estimator (α = 0.6, p = 1/3). Alternatively, we could find the optimal α and p in
the sense of minimizing the asymptotic variance of general trimean estimators µ̂j,i in (9). To
see this, we take partial derivatives of f (α, p) with respect to α and p and set them to 0. The
optimal α and p can be obtained by solving

∂f (α, p)

∂α
= − 2p− 1

2p (1− p)
α+

1 + p

2 (1− p)
− 3

2
= 0,

∂f (α, p)

∂p
=
α (2− α)

2 (1− p)2
+
α2 (2p− 1)

4p2 (1− p)2
= 0.

(13)

Since p ∈ (0, 1/2), and α ∈ [0, 1], we get the unique solution p = 1−
√

2/2 ≈ 0.3 and α = 2p ≈ 0.6.
The Hessian matrix of f (α, p) is[

∂2f(α,p)
∂α2

∂2f(α,p)
∂α∂p

∂2f(α,p)
∂α∂p

∂2f(α,p)
∂p2

]
=

 − 2p−1
2p(1−p)

2p2−2αp2+α(2p−1)
2p2(1−p)2

2p2−2αp2+α(2p−1)
2p2(1−p)2

2p3α(2−α)+α2p(1−p)+α2(2p−1)2

2p3(1−p)3

 .
Since − 2p−1

2p(1−p) > 0 and the determinant is 5.66 > 0 when p = 1−
√

2/2 ≈ 0.3 and α = 2p ≈ 0.6,
the above Hessian matrix is positive definite. Therefore, p = 1−

√
2/2 and α = 2−

√
2 provide

the global minima of f (α, p), minimizing the asymptotic variance of µ̂j,i. In comparing these
optimal α ≈ 0.6 and p ≈ 0.3 with α = 0.6 and p = 1/3 from the Gastwirth estimator, curiously,
we find that the calculated optimal general trimean estimator is very close to the Gastwirth
estimator.

3.2 General Trimean of the Logarithm of Mid-energy (GTLME) Method

In this section, we propose our second method, the general trimean of the logarithm of mid-
energy (GTLME) method, which takes logarithm first and then calculates the general trimean
estimators. The GTLME method involves the following three steps:

1) Calculate the general trimean estimators µ̂′j,i on{
log (Dj,i) , log (Dj,i+M ) , ..., log

(
Dj,(N/2−M+i)

)}
:= L(j, i),

where L(j, i) is the ith group of logarithm of mid-energies at level j in a J-level NDWT of a fBm
of size N with Hurst exponent H, 1 ≤ i ≤M and 1 ≤ j ≤ J .
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2) Obtain the regression slope β̂′i in the least square linear regressions on pairs
(
j, µ̂′j,i

)
for

1 ≤ J1 ≤ j ≤ J2 ≤ J .
3) Estimate the Hurst exponent by

Ĥ2 =
1

M

M∑
i=1

(
− β̂′i

2 log 2
− 1

2

)
= − 1

2 log 2
β̄′ − 1

2
, (14)

where β̄′ = 1
M

∑M
i=1 β̂

′
i is the average of regression slopes over the M groups, i = 1, 2, ...M .

The motivation of GTLME method is from the asymptotic distribution of general trimean
estimator µ̂′j,i that is derived from Lemma 1:

√
N
(
µ̂′j,i − (g(α, p) + log (λj))

) approx∼ N (0, 2Mh(α, p)), (15)

where

g (α, p) =
α

2
log

(
log

1

1− p
· log

1

p

)
+ (1− α) log (log 2) ,

h (α, p) =
α2

4h1 (p)
+
α (1− α)

2h2 (p)
+

(1− α)2

(log 2)2
. (16)

The h1 (p) and h2 (p) are two functions of p that are provided in the Appendix, λj = σ2·2−(2H+1)j ,
and σ2 is the variance of wavelet coefficients from level 0.

It is interesting to compare our two proposed methods, GTME and GTLME. The main
difference is whether to calculate general trimean estimators before or after taking the logarithm.
In GTLME method, the general trimean estimator µ̂′j,i, not the log2(µ̂

′
j,i), is linearly related to

(2H + 1)j, and we use the slopes β̄′i to estimate 2H + 1, therefore leading to the proposed
estimator in (14). Based on our extensive experience, the GTME seems more efficient in terms
of smaller variance, whereas the GTLME method is more robust to outliers.

The asymptotic distribution of Hurst exponent estimator Ĥ2 in GTLME method is provided
in the following theorem, whose proof is postponed in the Appendix.

Theorem 3.2. The estimator Ĥ2 follows the asymptotic normal distribution
√
N
(
Ĥ2 −H

)
approx∼ N (0, V2) . (17)

The asymptotic variance V2 is a constant number,

V2 =
6h(α, p)

(log 2)2q(J1, J2)
, (18)

where q(J1, J2) is given in (12) and h(α, p) is in (16).

Now we want to determine the optimal tuning parameters α and p. Again, we can set
α = 1/2 and p = 1/4 from Tukey’s trimean estimator or α = 0.6 and p = 1/3 from Gastwirth’s
estimator. Here, we will find the optimal α and p by minimizing the asymptotic variance of
general trimean estimator µ̂′j,i in (15), and the corresponding results also lead to the smallest
asymptotic variance V2 in (18). They can be obtained by solving

∂h (α, p)

∂α
= 0, and

∂h (α, p)

∂p
= 0. (19)
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Figure 5: Left: Plot of h (α, p) against p; Right: Plot of α against p.

From the first equation in (19), it can be derived that

α =

2
log(2)2

− 1
2h2 (p)

1
2h1 (p)− h2 (p) + 2

(log 2)2

. (20)

The second equation in (19) cannot be simplified to a finite form. As an illustration, we plot
h (α, p) with p ranging from 0 to 0.5, and α is a function of p in (20). The plot of α against p
is also shown in Figure 5. Numerical calculation gives α = 0.5965 and p = 0.24. These optimal
parameters are close to α = 0.5 and p = 0.25 in the Tukey’s trimean estimator, but put some
more weight on the median.

Even though we have proved that both the asymptotic distributions of Ĥ1 and Ĥ2 do not
depend on parameter M , M affects the estimation accuracy. To illustrate this, we simulate 300
fBm(0.7) of length 210 and apply our two methods, GTME and GTLME, with different M ’s
to obtain the estimated Hurst exponent H. The parameters α and p are fixed at the optimal
values, in other words, α = 2−

√
2 and p = 1−

√
2/2 for GTME, and α = 0.5965 and p = 0.24

for GTLME. Figure 6 plots the estimation mean square errors (MSEs) against different M ’s for
our two methods. We notice that small M cannot efficiently reduce the dependency among the
mid-energies, while largeM yields too small number of mid-energies within each group, although
the independency can be guaranteed, the estimation accuracy will be sacrificed.

4 Simulation

In this section, we will illustrate our proposed methods via simulation. We simulate one di-
mensional fBm signals of sizes N = 210, N = 211, and N = 212 with Hurst exponent H =
0.3, 0.5, 0.7, 0.8, 0.9, respectively. NDWT of depth J = 10 using Pollen wavelets with angles π/6
(Daubechies 2), π/4, π/3, and π/2 (Haar) are performed on each simulated signal to obtain
wavelet coefficients. Pollen wavelets with different angles generates a family possessing contin-
uum many wavelet bases of various degrees of regularity, see Vidakovic (2002). Special cases of
Pollen’s representation for π/6 and π/2 give Daubechies 2 filter and Haar filter, respectively.

Our proposed methods, GTME and GTLME, are then applied on the NDWT coefficients
to estimate Hurst exponent H. We select different combinations of parameters α and p in each
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Figure 6: Estimation MSE’s against parameter M .

method, leading to the following 6 variations:

I: GTME with α =
1

2
, p =

1

4
; (21)

II: GTLME with α =
1

2
, p =

1

4
; (22)

III: GTME with α = 0.6, p =
1

3
; (23)

IV: GTLME with α = 0.6, p =
1

3
; (24)

V: GTME with α = 2−
√

2, p = 1−
√

2

2
; (25)

VI: GTLME with α = 0.5965, p = 0.24. (26)

Variations I and II are based on Tuckey’s trimean estimator in (1), and variations III and IV use
Gastwirth’s estimator in (2). The α and p in variations V and VI are the optimal values obtained
in Section 3 to minimize the corresponding asymptotic variance of general trimean estimator.

Wavelet coefficients on each level are divided into eight groups (M = 8), and we use wavelet
coefficients from levels 4 (J1 = 4) to 9 (J2 = 9) for the least square linear regression. Note that
the performances of our proposed methods depend on the choices of those parameters, and here
they are properly chosen by grid search to guarantee good estimations of Hurst exponent. The
estimation performance of the proposed methods are compared to five other existing methods:
VA method, SSB method, MEDL method, MEDLA method, and TT method, all in the context of
NDWT. The main idea of all those existing methods is fitting linear regression and then utilizing



Estimation of Hurst Exponent 593

Table 1: Simulation results for N = 210 fBm using Haar wavelet.

Existing Methods Proposed Methods

H VA SSB MEDL MEDLA TT I II III IV V VI

Ĥ

0.3 0.2759 0.2795 0.2711 0.2720 0.2699 0.2759 0.2746 0.2743 0.2739 0.2748 0.2751
0.5 0.4663 0.5243 0.5116 0.5111 0.4709 0.5179 0.5160 0.5157 0.5148 0.5168 0.5166
0.7 0.5408 0.7320 0.7120 0.7111 0.5451 0.7187 0.7163 0.7172 0.7157 0.7183 0.7168
0.8 0.5393 0.8459 0.8132 0.8128 0.5406 0.8216 0.8188 0.8192 0.8175 0.8206 0.8196
0.9 0.5222 0.9595 0.9155 0.9064 0.5232 0.9114 0.9130 0.9102 0.9109 0.9108 0.9143

Variances

0.3 0.0031 0.0032 0.0036 0.0030 0.0023 0.0030 0.0031 0.0031 0.0032 0.0030 0.0031
0.5 0.0022 0.0049 0.0050 0.0038 0.0014 0.0040 0.0042 0.0041 0.0043 0.0040 0.0043
0.7 0.0052 0.0067 0.0059 0.0045 0.0048 0.0048 0.0050 0.0049 0.0050 0.0049 0.0049
0.8 0.0072 0.0083 0.0072 0.0052 0.0068 0.0050 0.0054 0.0052 0.0055 0.0050 0.0054
0.9 0.0076 0.0112 0.0087 0.0058 0.0075 0.0056 0.0062 0.0059 0.0062 0.0058 0.0063

MSEs

0.3 0.0037 0.0036 0.0044 0.0037 0.0032 0.0035 0.0037 0.0037 0.0038 0.0036 0.0037
0.5 0.0033 0.0055 0.0051 0.0039 0.0022 0.0043 0.0045 0.0043 0.0045 0.0043 0.0045
0.7 0.0306 0.0077 0.0060 0.0046 0.0288 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052
0.8 0.0751 0.0103 0.0073 0.0054 0.0741 0.0054 0.0058 0.0056 0.0058 0.0054 0.0058
0.9 0.1503 0.0147 0.0089 0.0058 0.1494 0.0057 0.0064 0.0060 0.0063 0.0059 0.0065

Note. Different variations of our proposed methods can be found in (21)-(26).

the slope to estimate Hurst exponent H: 1) For VA method, the weighted least square regression
is fitted on (j, log2

(
d̄2j

)
), and dj indicates the wavelet coefficients at level j; 2) the SSB method is

fitting a weighted least square regression on (j, log2Dj), where Dj represents the mid-energies at
level j; 3) the MEDL method is to fit an ordinary linear regression on (j,median{log d2j}); 4) for
the MEDLAmethod, a simple linear regression is fitted on

(
j,median

{
log
((
d2jk1 + d2jk2

)
/2
)})

,

where k1 and k2 are the positions of wavelet coefficients that are at least 2J−j apart; 5) the TT
method is similar to VA method, but it fits a Theil-type regression on (j, log2

(
d̄2j

)
). The details

of those methods have been provided and discussed in the Introduction section. Estimation
performance is reported in terms of mean, variance, and mean square error (MSE) based on 300
repetitions for each case.

The proposed methods preform the best using Haar wavelet (Pollen wavelets with angle π/2),
and the simulation results are shown in Table 1 to Table 3 for fBm of sizes N = 210, N = 211, and
N = 212, respectively. Similar results are obtained for other wavelets. For each H (corresponding
to each row in the table), the smallest variances and MSEs are highlighted in bold. Compared
with those existing methods, our methods yield significantly smaller variances and MSEs when H
is large (H >= 0.7). When H = 0.3 and 0.5, the proposed methods perform better than the SSB
method, similar to the MEDL and the MEDLA, but worse than the VA and the TT methods,
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Table 2: Simulation results for N = 211 fBm using Haar wavelet

Existing Methods Proposed Methods

H VA SSB MEDL MEDLA TT I II III IV V VI

Ĥ

0.3 0.2808 0.2767 0.2747 0.2749 0.2707 0.2739 0.2736 0.2739 0.2738 0.2738 0.2736
0.5 0.4811 0.5137 0.5023 0.4979 0.4830 0.5038 0.5024 0.5012 0.5005 0.5028 0.5034
0.7 0.5423 0.7311 0.7036 0.7075 0.5428 0.7126 0.7106 0.7109 0.7096 0.7116 0.7110
0.8 0.5386 0.8417 0.8114 0.8095 0.5369 0.8155 0.8148 0.8130 0.8131 0.8141 0.8156
0.9 0.5258 0.9449 0.9055 0.9016 0.5229 0.9055 0.9075 0.9047 0.9062 0.9048 0.9083

Variances

0.3 0.0017 0.0014 0.0018 0.0013 0.0014 0.0012 0.0014 0.0013 0.0014 0.0012 0.0014
0.5 0.0011 0.0021 0.0021 0.0016 0.0007 0.0017 0.0019 0.0019 0.0020 0.0017 0.0018
0.7 0.0041 0.0039 0.0034 0.0026 0.0039 0.0025 0.0028 0.0028 0.0029 0.0026 0.0027
0.8 0.0051 0.0061 0.0044 0.0038 0.0052 0.0036 0.0041 0.0038 0.0041 0.0037 0.0041
0.9 0.0064 0.0046 0.0041 0.0026 0.0063 0.0021 0.0024 0.0023 0.0024 0.0022 0.0024

MSEs

0.3 0.0021 0.0019 0.0024 0.0020 0.0023 0.0019 0.0021 0.0020 0.0021 0.0019 0.0021
0.5 0.0014 0.0023 0.0021 0.0016 0.0010 0.0017 0.0019 0.0018 0.0020 0.0017 0.0018
0.7 0.0289 0.0048 0.0034 0.0027 0.0286 0.0026 0.0028 0.0028 0.0030 0.0027 0.0028
0.8 0.0733 0.0078 0.0045 0.0038 0.0744 0.0038 0.0043 0.0039 0.0042 0.0038 0.0043
0.9 0.1463 0.0065 0.0041 0.0026 0.1484 0.0021 0.0024 0.0023 0.0024 0.0022 0.0025

Note. Different variations of our proposed methods can be found in (21)-(26).
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Table 3: Simulation results for N = 212 fBm using Haar wavelet.

Existing Methods Proposed Methods

H VA SSB MEDL MEDLA TT I II III IV V VI

Ĥ

0.3 0.2773 0.2736 0.2693 0.2708 0.2682 0.2710 0.2707 0.2708 0.2705 0.2709 0.2710
0.5 0.4781 0.5008 0.4891 0.4896 0.4790 0.4932 0.4923 0.4920 0.4915 0.4925 0.4926
0.7 0.5482 0.7170 0.6964 0.6998 0.5463 0.7052 0.7030 0.7045 0.7031 0.7052 0.7031
0.8 0.5352 0.8186 0.7948 0.7970 0.5319 0.8021 0.8004 0.8009 0.7999 0.8014 0.8005
0.9 0.5357 0.9200 0.8933 0.8913 0.5317 0.8933 0.8943 0.8933 0.8939 0.8932 0.8946

Variances

0.3 0.0010 0.0008 0.0009 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
0.5 0.0005 0.0011 0.0014 0.0011 0.0004 0.0010 0.0011 0.0010 0.0011 0.0010 0.0010
0.7 0.0045 0.0018 0.0021 0.0014 0.0046 0.0013 0.0015 0.0014 0.0015 0.0014 0.0015
0.8 0.0049 0.0021 0.0022 0.0016 0.0047 0.0014 0.0017 0.0015 0.0017 0.0015 0.0016
0.9 0.0079 0.0038 0.0038 0.0023 0.0075 0.0020 0.0024 0.0022 0.0024 0.0021 0.0024

MSEs

0.3 0.0015 0.0015 0.0019 0.0016 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
0.5 0.0010 0.0011 0.0015 0.0012 0.0008 0.0010 0.0011 0.0011 0.0012 0.0010 0.0011
0.7 0.0275 0.0021 0.0021 0.0014 0.0282 0.0013 0.0015 0.0014 0.0015 0.0014 0.0015
0.8 0.0750 0.0024 0.0022 0.0016 0.0765 0.0014 0.0016 0.0015 0.0017 0.0014 0.0016
0.9 0.1405 0.0042 0.0038 0.0023 0.1431 0.0021 0.0024 0.0023 0.0024 0.0022 0.0024

Note. Different variations of our proposed methods can be found in (21)-(26).
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Figure 7: Histograms and theoretical distributions of Ĥ.

however, both VA and TT methods have bad performances when H increases. Besides, the
estimation variances of our proposed methods decrease as the length of the fBm signal increases.
The performances of our 6 variations are different, but still very similar, regarding variances
and MSEs. It is due to the fact that they use different combinations of α and p in the general
trimean estimator, however, the values used in those variations are very similar, as is shown
in (21)-(26). Besides, the variances of variation V and VI that are based on the optimal α’s
and p’s are not always the smallest, compared to other variations. The optimal values that we
obtained through theoretical analysis provide useful suggestions in reality, however, since the
independency constraints can be easily violated, it is still beneficial to empirically check other
possible values of α and p to obtain the most accurate results. Based on our simulation study,
we notice that here variation I based on Tukey’s trimean estimator of the mid-energy has the
best performance.

Figure 7 shows the histograms of Ĥ using the GTME method with optimal parameters given
in (25) and the GTLME method with optimal parameters in (26), respectively. To generate these
plots, we simulate 300 fBm(0.7) with size 210 and apply the proposed two methods to obtain
the estimated Ĥ. The solid curves in the plots are the theoretical distributions of Ĥ given in
theorems 3.1 and 3.2. As can be seen, the empirical distribution of Ĥ is close to the theoretical
results given in the theorems.

5 Application

In this section, we apply the proposed methods to PRB data in order to classify individuals
according to their visual impairment. Participants in this study consists of 24 older adults,
solicited from the patient pool of the Bascom Palmer Eye Institute of the University of Miami
School of Medicine. Participants were selected on the basis of having either no ocular disease
or only Age-related Macular Degeneration (AMD), as assessed by patient history and clinical
testing.

Participants were assigned to three groups: one control group, and two experimental groups
I and II. The control group is a set of individuals with healthy, unaffected vision and no evidence
of any ocular disease or trauma. Individuals in two experimental groups had varying visual
acuity and were diagnosed with AMD. Patients in group II had more severe visual impairment
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Table 4: Group characterization summary.

Group N Visual Acuity AMD Number of original data Number of cleaned data

Control 6 20/20-20/40 No 60 49
I 8 20/20-20/50 Yes 100 92
II 10 20/60-20/100 Yes 96 262

Note. N represents the number of individuals in the group; Visual Acuity signifies the range of Snellen acuity
scores for the individuals in the given group; AMD indicates whether the individuals were diagnosed with age-
related macular degeneration or not; Number of original data and Number of cleaned data show the number of
2048 length original data and cleaned data, respectively.

than those in group I. The number of participants is 6 in control group, 8 in group I, and 10
in group II. In Introduction part, we have already shown in Figure 1 the examples of raw PRB
data of three different individuals from control group, group I, and group II, respectively.

Researchers have utilized simple statistical methods for analyzing PRB, for example, com-
paring the relative mean or variance of pupil size deviation in response to stimuli; some so-
phisticated techniques have also been utilized, like power, frequency and spectral analysis using
mathematical tools. However, they failed to characterize the underlying patterns within time
series PRB data. Wavelet analysis to estimate the Hurst exponent of the high-frequency, time
series physiological data is a useful tool for detecting these hidden patterns and differentiating
individuals based on these unique patterns in their physiological behavior.

In this section, we propose to use 1-D fractional Brownian motion (fBm) to model the PRB
data. We have provided brief introduction to fBm in Section 1, and the examples of 1-D fBm are
plotted in Figure 2. Intuitively, the PRB data, as is shown in Figure 1, looks close to 1-D fBm,
except that it is noisy due to the human blinks and the noise caused by equipment. To reduce
such noise, we manually remove the blinks and equipment artifacts from the original signals.
In order to illustrate the robustness of our methods, the proposed methods and other existing
methods will be applied to both the original, noisy data and the cleaned data with blink and
equipment artifacts removed.

Like in many human-subject studies, the limited number of participants is a major disad-
vantage, but in PRB data set, each subject has enough measurements to segment into multiple
pieces with a length of 2048 observations. The number of 2048 length original data and cleaned
data within each group are shown in Table 4. Although this induces dependence between the
data, we will use hierarchical models to accommodate for the subject induced dependence later.
Here we use the same 6 variations of our proposed methods as those in Simulation section, and
the corresponding parameter settings can be found in (21)-(26). The parameters M = 8, J1 = 3,
and J2 = 7 in our methods are selected by grid search to minimize the misclassification rate
on testing data. The classification performances of the proposed methods are compared to five
other methods: VA, SSB, MEDL, MEDLA, and TT. They are implemented as described in the
Simulation section.

Table 5 and Table 6 provide descriptive statistics of the estimated Hurst exponent Ĥ from
original data and cleaned data, respectively. As can be seen from Table 6, for the cleaned data,
the control group exhibited the smallest value for Ĥ in both the mean and median. In fact,
signals with smaller Hurst exponent H tend to be more disordered and unsystematic, therefore
individuals without visual impairment tend to have more disordered pupil diameter signals.
However, for the original data, control group did not exhibit the smallest Ĥ due to the noise
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Table 5: Descriptive statistics group summary (original noisy data).

Existing Methods Proposed Methods

H VA SSB MEDL MEDLA TT I II III IV V VI

Mean of Ĥ

Control 0.2206 0.4242 0.3583 0.3660 0.2740 0.3524 0.3602 0.3602 0.3615 0.3567 0.3590
I 0.2781 0.5698 0.4195 0.4201 0.3346 0.4229 0.4255 0.4261 0.4262 0.4254 0.4246
II 0.1949 0.4391 0.3522 0.3297 0.2306 0.3099 0.3273 0.3214 0.3292 0.3163 0.3260

Median of Ĥ

Control 0.2336 0.4511 0.3416 0.3597 0.2795 0.3734 0.3681 0.3443 0.3540 0.3479 0.3719
I 0.2537 0.5696 0.4036 0.4227 0.3301 0.4219 0.4255 0.4197 0.4283 0.4174 0.4262
II 0.2107 0.4322 0.3686 0.3396 0.2544 0.3248 0.3370 0.3369 0.3406 0.3319 0.3377

Variance of Ĥ

Control 0.0197 0.0358 0.0349 0.0414 0.0191 0.0327 0.0333 0.0356 0.0353 0.0340 0.0317
I 0.0190 0.0344 0.0153 0.0158 0.0177 0.0186 0.0166 0.0174 0.0168 0.0181 0.0167
II 0.0225 0.0381 0.0190 0.0164 0.0293 0.0185 0.0167 0.0173 0.0167 0.0178 0.0167

Note. Different variations of our proposed methods can be found in (21)-(26).

caused by blinks and equipment artifacts, which can be seen from Table 5.
The objective is to classify the visual impairment groups based on the estimated Hurst

exponent for a given 2048 length pupil diameter data. Before doing the classification, we need
to first deal with subject induced dependence through the following hierarchical model. If we
denote i to be the group index where the piece of observations is from, with i = 0 for control
group, i = 1 for group I, i = 2 for group II, and nj as the number of pieces generated from
subject j (j=1,2,..,24), the estimated Hurst exponent Ĥijk for the kth piece of subject j nested
in group i can be expressed in the following model:

Ĥijk = µ+ αi + βj(i) + εijk, (27)

where µ is the overall mean, αi is the effect for ith group, βj(i) is the effect for jth participant
within ith group, and εijk is the random error. In avoid of dependency between data due to
subject effects, the estimated β̂j(i) is first subtracted from Ĥijk, and then multinomial logistic

regression model is fitted on the data
{(
Ĥijk − β̂j(i), i

)
, i = 0, 1, 2, j = 1, ..., 24, k = 1, ..., nj

}
.

To test the model performance, we randomly choose 80% of the data points to form a training
set, and the remaining 20% forms the testing set. Model is developed on the training set and
applied on the testing set.

Misclassification rates are reported in Table 7. When doing the classification on the original
noised data, our robust methods performed the best, with the minimal misclassification error
37.21%. On the blinks-removed data, our methods outperformed or were comparable to other
methods. In general, our methods provide a robust tool to classify different degrees of visual
impairment for AMD patients.
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Table 6: Descriptive statistics group summary (cleaned data).

Existing Methods Proposed Methods

H VA SSB MEDL MEDLA TT I II III IV V VI

Mean of Ĥ

Control 0.1811 0.3650 0.3025 0.2804 0.2466 0.2722 0.2826 0.2806 0.2851 0.2772 0.2821
I 0.2751 0.5601 0.4048 0.4092 0.3311 0.3926 0.4040 0.4013 0.4076 0.3975 0.4031
II 0.2088 0.4356 0.3494 0.3246 0.2489 0.3028 0.3198 0.3140 0.3219 0.3085 0.3186

Median of Ĥ

Control 0.1775 0.3801 0.3311 0.3010 0.2387 0.3012 0.3065 0.3043 0.3070 0.3004 0.3040
I 0.2729 0.5210 0.4168 0.4117 0.3354 0.3959 0.4122 0.4033 0.4113 0.4011 0.4105
II 0.2301 0.4227 0.3580 0.3380 0.2865 0.3121 0.3329 0.3237 0.3345 0.3171 0.3312

Variance of Ĥ

Control 0.0094 0.0238 0.0126 0.0116 0.0091 0.0122 0.0122 0.0123 0.0122 0.0124 0.0121
I 0.0077 0.0310 0.0097 0.0131 0.0057 0.0121 0.0124 0.0124 0.0126 0.0122 0.0123
II 0.0149 0.0390 0.0182 0.0153 0.0195 0.0148 0.0152 0.0149 0.0152 0.0147 0.0152

Note. Different variations of our proposed methods can be found in (21)-(26).

Table 7: Classification error.

Existing Methods Proposed Methods

VA SSB MEDL MEDLA TT I II III IV V VI

Blinks removed 0.4568 0.4074 0.4691 0.3704 0.4444 0.3951 0.3827 0.3827 0.3827 0.3951 0.3827
Original data 0.4651 0.3953 0.4535 0.3837 0.4419 0.3721 0.3837 0.3721 0.3721 0.3837 0.3721

Note. Different variations of our proposed methods can be found in (21)-(26).
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6 Conclusions

In this paper, we proposed two methods, GTME and GTLME, to improve the robust estimation
of Hurst exponent from the fractional Brownian motion through wavelet transformations. The
three key ideas in our proposed methods are: 1) We define a general trimean estimator that is
a weighted average of median and two quantiles, and it turns out that the well known Tukey’s
trimean estimator and Gastwirth estimator are two special cases under this framework; 2) When
utilizing non-decimated wavelet transforms (NDWT) wavelet coefficients to obtain Hurst expo-
nent estimators, we reduce the dependency of NDWT wavelet coefficients by rearranging each
level coefficients into groups, so that the distance between any two points within the same group
are large enough; 3) Instead of using mean or median, we apply the general trimean estimator
to wavelet coefficients (GTME) or the logarithm of wavelet coefficients (GTLME), and then
derive its asymptotic distribution, which depends on Hurst exponent H and leads to the robust
estimation of H.

The estimation performance of the proposed methods were compared to five other exist-
ing methods: Veitch & Abry (VA) method, Soltani, Simard, & Boichu (SSB) method, MEDL
method, MEDLA method, and Theil-type regression (TT) method. Simulation results indi-
cated our proposed methods yielded smaller variance and MSEs when estimating Hurst exponent
H, in particular for large H’s. For fBm with small to moderate Hurst exponent, for example
H = 0.3 or 0.5, our methods still outperformed SSB, MEDL and MEDLA, and were comparable
to VA and TT.

Our proposed two methods have been applied to a real pupillary response behavior (PRB)
data set for visual impairment classification. The unique pattern of PRB data cannot be ef-
ficiently represented by the trends or traditional statistical summaries of the signal, and our
proposed methods helped to detect those unique patterns by estimating the Hurst exponent
from the data. The estimated Hurst exponent was then used as a predictor in the multinomial
logistic regression model to classify individuals with different degrees of visual impairment. It
turns out that our robust methods yielded the smallest three-class misclassification rate 37.21%
on the noisy PRB data. Besides, we noticed that the healthy group exhibited the smallest value
for estimated Hurst exponent H, which indicated individuals without visual impairment had
more disordered signals. This is common for many other biometric signals: EEG, EKG, high
frequency protein mass-spectra, high resolution medical images of tissue, to list a few.
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Appendix

In the Appendix, we include the detailed proof of Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1

Proof. A single wavelet coefficient in a non-decimated wavelet transform of a fBm of size N with
Hurst exponent H is normally distributed, with variance depending on its level j, therefore, each
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pair dj,k and dj,k+N/2 in mid-energy Dj,k are assumed to be independent and follow the same
normal distribution.

dj,k, dj,k+N/2 ∼ N
(

0, 2−(2H+1)jσ2
)
.

Then the mid-energy is defined as

Dj,k =

(
d2j,k + d2j,k+N/2

)
2

, j = 1, .., J, and k = 1, ..., N/2,

and it can be readily shown that Dj,k has exponential distribution with scale parameter λj =
σ2 · 2−(2H+1)j , i.e.,

f (Dj,k) = λ−1j e−λ
−1
j Dj,k , for any k = 1, .., N/2.

Therefore the ith subgroup
{
Dj,i, Dj,i+M , Dj,i+2M , ..., Dj,(N/2−M+i)

}
are i.i.d. exp

(
λ−1j

)
, and

when applying general trimean estimator µ̂j,i on it, following the derivation in Section 2, we have

ξ =

[
log

(
1

1− p

)
λj log (2)λj log

(
1

p

)
λj

]T
,

and

Σ =


p

(1−p)λ
2
j

p
(1−p)λ

2
j

p
(1−p)λ

2
j

p
(1−p)λ

2
j λ2j λ2j

p
(1−p)λ

2
j λ2j

1−p
p λ2j


3×3

,

therefore, the asymptotic distribution of µ̂j,i is normal with mean

E (µ̂j,i) = A · x

=

(
α

2
log

(
1

p (1− p)

)
+ (1− α) log 2

)
λj

, c (α, p)λj ,

and variance
Var (µ̂j,i) =

2M

N
AΣAT

=
2M

N

(
α(1− 2p)(α− 4p)

4p(1− p)
+ 1

)
λ2j

,
2M

N
f(α, p)λ2j

Since the Hurst exponent can be estimated as

Ĥ1 = − β̄
2
− 1

2
, (28)

where β̄ = 1/M
∑M

i=1 β̂i is the average regression slope in the least square linear regression on
pairs (j, log2 (µ̂j,i)) from level J1 to J2, J1 ≤ j ≤ J2. It can be easily derived that each β̂i is a
linear combination of log2 (µ̂j,i),

β̂i =

J2∑
j=J1

aj log2 (µ̂j,i) , aj =
j − (J1 + J2)/2∑J2

j=J1
(j − (J1 + J2)/2)2

.
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We can check that
∑J2

j=J1
aj = 0 and

∑J2
j=J1

ajj = 1. Also, if X ∼ N (µ, σ2), the approximate
expectation and variance of g(X) are

E(g(X)) = g(µ) +
g′′(µ)σ2

2
, and Var(g(X)) =

(
g′(µ)

)2
σ2

based on which we calculate

E (log2 (µ̂j,i)) = −(2H + 1)j + Constant, and

Var (log2 (µ̂j,i)) =
2M
N
f(α,p)

(log 2)2c2(α,p)

Therefore
E
(
β̂i

)
=
∑n

j=J1
ajE (log2 (µ̂j,i)) = −(2H + 1), and

Var
(
β̂i

)
=
∑J2

j=J1
a2j Var (log2 (µ̂j,i)) := 4M × V1

and
E
(
Ĥ1

)
= H, and Var

(
Ĥ1

)
=

1

N
· V1 (29)

where the asymptotic variance V1 is a constant number independent of group number M and
level j,

V1 =
6f(α, p)

(log 2)2(c (α, p))2q(J1, J2)
,

and
q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2).

Proof of Theorem 3.2

Proof. We have stated that Dj,k ∼ Exp
(
λ−1j

)
with scale parameter λj = σ2 · 2−(2H+1)j , so that

f (Dj,k) = λ−1j e−λ
−1
j Dj,k , for any k = 1, .., N/2.

Let yj,k = log (Dj,k) for any j = 1, ..., J and k = 1, ..., N/2. The pdf and cdf of yj,k are

f (yj,k) = λ−1j e−λ
−1
j e

yj,k
eyj,k ,

and
F (yj,k) = 1− e−λ

−1
j e

yj,k
.

The p-quantile can be obtained by solving F (yp) = 1−e−λ
−1
j eyp = p, and yp = log (−λj log (1− p)).

Then it can be shown that f (yp) = − (1− p) log (1− p). When applying the general trimean
estimator µ̂′j,i on {

log (Dj,i) , log (Dj,i+M ) , ..., log
(
Dj,(N/2−M+i)

)}
,

following the derivation in Section 2, we get

ξ =


log
(

log
(

1
1−p

))
+ log (λj)

log (log 2) + log (λj)

log
(

log
(
1
p

))
+ log (λj)

 ,
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and

Σ =


p

(1−p)(log(1−p))2
p

(1−p) log(1−p) log( 1
2)

p
(1−p) log(1−p) log p

p

(1−p) log(1−p) log( 1
2)

1
(log 2)2

1
log( 1

2) log p
p

(1−p) log(1−p) log p
1

log( 1
2) log p

1−p
p(log p)2

 ,
thus, the asymptotic distribution of µ̂j,i is normal with mean

E
(
µ̂′j,i
)

= A · ξ

=
α

2
log

(
log

1

1− p
· log

1

p

)
+ (1− α) log(log 2) + log (λj)

, g(α, p) + log (λj)

and variance
Var

(
µ̂′j,i
)

=
1

N/16
AΣAT

=
2M

N

(
α2

4
h1(p) +

α(1− α)

2
h2(p) +

(1− α)2

(log 2)2

)
,

2M

N
h(α, p)

where
h1 (p) =

p

(1− p) (log (1− p))2
+

1− p
p (log p)2

+
2p

(1− p) log (1− p) log p
,

and
h2 (p) =

2p

(1− p) log (1− p) log 1
2

+
2

log 1
2 log p

.

Since the Hurst exponent can be estimated as

Ĥ2 = − 1

2 log 2
β̄′ − 1

2
, (30)

where β̄′ = 1/M
∑M

i=1 β̂
′
i is the avearge regression slope in the least square linear regressions

on pairs
(
j, µ̂′j,i

)
from level J1 to J2, J1 ≤ j ≤ J2. It can be easily derived that β̂′i is a linear

combination of µ̂′j,i,

β̂′i =

J2∑
j=J1

ajµ̂
′
j,i, aj =

j − (J1 + J2)/2∑J2
j=J1

(j − (J1 + J2)/2)2
.

Again, we can check that
∑J2

j=J1
aj = 0 and

∑J2
j=J1

ajj = 1. Therefore

E
(
β̂′i

)
=
∑J2

j=J1
ajE

(
µ̂′j,i

)
= −(2H + 1) log 2, and

Var
(
β̂′i

)
=
∑J2

j=J1
a2j Var

(
µ̂′j,i

)
:= 4(log 2)2M × V2

and
V2 =

6f(α, p)

(log 2)2q (J1, J2)
, (31)
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where the asymptotic variance V2 is a constant number independent of group number M and
level j,

V2 =
6f(α, p)

(log 2)2q(J1, J2)
,

and
q(J1, J2) = (J2 − J1)(J2 − J1 + 1)(J2 − J1 + 2).
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