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Abstract

This paper proposes a new asymptotically valid stationary bootstrap procedure to obtain mul-
tivariate forecast densities in unrestricted vector autoregressive models. The proposed method
is not based on either backward or forward representations, so it can be used for both Gaussian
and non-Gaussian models. Also, it is computationally more efficient compared to the available
resampling methods. The finite sample performance of the proposed method is illustrated by
extensive Monte Carlo studies as well as a real-data example. Our records reveal that the pro-
posed method is a good competitor or even better than the existing methods based on backward
and/or forward representations.
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1 Introduction

Since the seminal paper of Sims (1980) vector autoregressive (VAR) models have received much
attention in econometrics to analyze multivariate time series data. They provide a flexible frame-
work for the analysis of complex dynamics, policy analysis, structural inference and forecasting.
Lütkepohl (1991), Watson (1994), and Stock and Watson (2001) are fundamental technical ref-
erences on this subject and they present an excellent overview of research on VAR models. For
the financial applications of VAR model please see Lütkepohl (1991), Campbell et al. (1997),
Culbertson (1996), Mills (1999), and Tsay (2001). In this study, we restricted our focus to the
forecasting ability of VAR models. VAR model is one of the most commonly used techniques for
forecasting, and it has been used in a wide range of applications. See, for example, Batchelor
et al. (2007), Gupta et al. (2011), Baumeister and Kilian (2012), D’Agostino et al. (2013), Kilian
and Vigfusson (2013), and Hassani et al. (2015) for recent studies on VAR model in econometric
applications.

Forecasting with VAR models mostly focuses on the point forecast, which may not provide
an accurate inference for a future realization of a time series. As pointed out by Kim (1999),
this practice is seriously flawed because the use of point forecasts is meaningless if the extent
of the associated uncertainty is unknown. On the other hand, interval forecasts provide better
inferences taking into account uncertainty associated with each forecast; see Chatfield (1993),
Jore et al. (2010), and Bache et al. (2011). In the context of multivariate time series, the
interval forecasts for a given horizon are obtained in the form of ellipsoid and/or Bonferronni
cube, see Lütkepohl (1991) and Kim (1999). Traditional approaches to calculate multivariate
forecast densities require strong assumptions such as Gaussian forecast errors, known lag order,
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and model parameters which are generally unknown in practice. Moreover, the constructed
forecast densities can be affected due to any departure from the assumptions and may lead
us to unreliable results. Such departures from the assumptions are quite possible especially
in financial time series. Alternative computational procedures to construct forecast densities
without considering distributional assumptions and lag order uncertainties include the use of the
well-known resampling methods, such as the bootstrap.

The early studies about obtaining bootstrap forecast densities in VAR models were con-
ducted by Kim (1999) who extends the procedure proposed by Thombs and Schucany (1990) in
the context of univariate AR(p) processes. Further, Kim (2001) and Kim (2004) suggested to use
bootstrap-after-bootstrap approach to obtain bias-corrected forecast regions. These procedures
use backward representation of the model when generating the bootstrap replicates. However,
using backward representation increases the complexity of the procedure and restricts the imple-
mentation of bootstrap method. To overcome these vexing issues Fresoli et al. (2015) proposed
a bootstrap procedure (abbreviated as “FRP”) by extending the studies of Pascual et al. (2004,
2006) for constructing multi-step multivariate forecast densities in the context of non-Gaussian
unrestricted VAR models. Their procedure avoids the backward representation (it uses forward
representation), thus it can be used to obtain multivariate forecast densities in VARMA and
VAR-GARCH models.

In this paper, we propose a simple bootstrap procedure, which is originally proposed by
Hwang and Shin (2013) for AR(p) models, to obtain multivariate forecast densities in VAR
models. It combines the stationary bootstrap of Politis and Romano (1994) and traditional
residual based bootstrap method to generate bootstrap replications. The proposed method is
not based on either backward or forward representations when generating the bootstrap sample
of the original data, hence it requires less computing time compared to such bootstrap methods.
Also, it can be applied to VARMA and VAR-GARCH models as in FRP. Our extension works
as follows. First, the Ordinary Least Squares (OLS) estimators of the VAR model are obtained
and the residuals are calculated. Then, the stationary bootstrap method is applied to the data
to obtain the bootstrap sample which is used to calculate the bootstrap estimators of the VAR
coefficients. Finally, the future values of the VAR process are obtained by means of bootstrap
replicates and quantiles of the Monte Carlo estimates of the generated bootstrap distribution.

The remaining of the paper is organized as follows. In Section 2, we describe the boot-
strap procedure based on stationary bootstrap method to construct forecast densities of VAR
process. In Section 3, extensive Monte Carlo simulations based on VAR(2) (stationary), VAR(5)
(persistent), and VAR(10) (near-cointegrated) models with different parameter values and error
distributions are conducted to examine the finite sample performance of the proposed method,
and the results are compared with those of FRP. The joint forecast densities of the quarterly US
inflation, unemployment, and GDP growth data are obtained, and the results are presented in
Section 4. Section 5 concludes the paper.

2 Methodology

Let us consider an N -dimensional multivariate time series {Yt} = {· · · , Yt−1, Yt, Yt+1, · · · }. It
follows VAR(p) model with autoregressive order p if

Yt = µ+ Φ1Yt−1 · · ·+ ΦpYt−p + εt, t = −p+ 1, · · · , T, (1)

where Yt = (Y1t, · · · , YNt)
′ ∈ RN is the available time series consisting of random N × 1 vectors,

µ = (µ1, · · · , µN )′ is an N × 1 vector of intercept term, Φi, i = 1, · · · , p, are N × N matrices
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of coefficients satisfying the stationary condition, and {εt} is multivariate white noise with non-
singular covariance matrix Σε. For j = 1, · · · , N , let

Y (j) =

Yj1...
YjT

 and Z =

1 z′0
...
1 z′T−1

 ,
with zt−1 =

(
Y ′t−1, · · · , Y ′t−p

)
. There are N linear regression models such that

Y (j) = ZΦ(j) + ε(j), j = 1, · · · , N, (2)

where Φ(j) and ε(j) represent an Np × 1 vector of regression parameters for the jth time series
and T vector of errors, respectively. Then, we have a multivariate regression model consisting of
N components as follows:

Y = ZΦ + ε. (3)

The OLS estimator of Φ, Φ̂ =
(

Φ̂1, · · · , Φ̂p

)
, is then obtained as follows:

Φ̂ =
(
Z ′Z

)−1
Z ′Y. (4)

Throughout this paper, we obtain the OLS estimates of the VAR(p) parameters taking into
account the stationarity restriction of Kilian (1998).

Forecasting forms a large part of multivariate time series analysis. In the context of VAR
model, forecasting future observations is similar to forecasting from univariate autoregressive time
series models. The point predictor of YT+h, where h is the forecast horizon, can be obtained by
the chain rule of forecasting as follows:

ŶT+h|T = µ̂+ Φ̂1ŶT+h−1|T + · · ·+ Φ̂pŶT+h−p|T , (5)

where ŶT+j|T = YT+j for j ≤ 0. Let Σ(h) =
∑h−1

k=0 ΨkΣΨ′k be the mean square error matrix of
YT+h|T , where Ψk =

∑p−1
k=1 Ψk−jΦj with Ψ0 = IN and Φj = 0 for k > p. If εt is assumed to

be Gaussian then the forecast density of the h-step ahead forecast density may be estimated as
follows:

YT+h ∼ N
(
ŶT+h|T , Σ̂(h)

)
. (6)

The prediction ellipsoid is obtained based on Equation (6). On the other hand, obtaining this
ellipsoid becomes complicated when h ≥ 2. Also, the forecast regions obtained by prediction
ellipsoid are based on the assumption of Gaussian distributed error terms, so, they may not
be reliable when the errors are non-Gaussian. Consequently, a Bonferroni cube was proposed
by Lütkepohl (1991) to construct forecast regions. As noted earlier, construction of forecast
densities/regions may be affected by a great amount due to any departure from the distributional
assumptions and may lead us to unreliable results; see Dufour and Jouini (2006), and Fresoli
et al. (2015). Bootstrap-based forecast densities are provide a possible solution to overcome this
issue since they are not require the full knowledge of the underlying data and distributional
assumptions. In this context, Kim (1999) proposed a bootstrap method based on backward
recursion to obtain h-step ahead forecast densities. Kim (2001) and Kim (2004) modified this
procedure to obtain bias-corrected bootstrap forecast regions. However, bootstrap methods based
on such representation are complicated and time consuming. Also, it limits the applicability of
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the bootstrap method. Later, Fresoli et al. (2015) proposed a simpler bootstrap method which
is based on forward recursion. In this study, we propose a stationary bootstrap based procedure
to obtain forecast regions for non-Gaussian unrestricted VAR models. Note that we construct
only the Bonferroni cube in our numerical analysis since it provides better forecast regions by
taking into account the asymmetry of the distribution compared to forecast ellipsoid.

To start with, consider the observed N -dimensional multivariate time series data {Yt} =
{Y1, · · · , YT }. Let B(i`) = (Yi, · · · , Yi+`−1), for i ≥ 1, be the blocks of ` consecutive observations
starting from Yi. The observed time series data {Yt} is wrapped around a circle in order to ensure
that all starting points have equal probability of selection. Let I1, I2, · · · be the independetly
and identically distributed (iid) discrete uniform random variables on {1, · · · , T} so that P (I1 =
i) = 1/n, for i = 1, · · · , T . Let also L1, L2, · · · be the iid geometric random variables with
parameter ρ such that 0 < ρ < 1 and the probability mass function P (L1 = `) = ρ(1 − ρ)`−1,
for ` = 1, 2, · · · . We assume that two sets {I1, I2, · · · } and {L1, L2, · · · } are independent and
ρ → 0 as Tρ → ∞. Then, the stationary bootstrap time series data {Y ∗t } = {Y ∗1 , · · · , Y ∗T } are
generated by sampling from {BI1L1 , BI2L2 , · · · } where BIrLr = {YIr , · · · , YIr+Lr−1} for r ≥ 1.
The stationary bootstrap, among other block based bootstrap methods such as non-overlapping
or overlapping block bootstrap, is a useful tool because it has a random block length and captures
the stationarity of the original data, see Politis and Romano (1994) for more detailed information.
Next, we define our proposed algorithm to construct forecast regions for VAR(p) models.
Step 1. Determine the lag-order p by some information criteria and obtain the OLS estimation

of the parameter vector Φ, Φ̂. Note that we used Akaike information criteria (AIC) to
determine the optimal p for all the numerical analysis considered in this paper.

Step 2. Obtain the residuals ε̂t = Y − ZΦ̂ for t = p + 1, · · · , T . Let F̂ε be the empirical
distribution function of the centered and re-scaled residuals.

Step 3. Generate the stationary bootstrap observations {z∗1 , · · · , z∗T } with z∗t =
{

1, Y ∗′t−1, · · · , Y ∗′t−p
}

from {z1, · · · , zT }.
Step 4. Calculate the stationary bootstrap estimators Φ̂∗ =

(
Φ̂∗1, · · · , Φ̂∗p

)
as in (4) but using

the bootstrap observations obtained in the previous step,

Φ̂∗ =
(
Z∗′Z∗

)−1
Z∗′Ỹ ∗,

where Z∗ = (z∗1 , · · · , z∗T ) and Ỹ ∗ = Z∗Φ̂ + ε̂∗ where ε̂∗ = (ε̂∗1, · · · , ε̂∗T ) is an iid sequence
from F̂ε.

Step 5. Calculate h = 1, 2, · · · step ahead bootstrap replicate of YT , Y ∗T+h|T with the following
recursion,

Y ∗T+h|T = µ̂∗ + Φ̂∗1Ŷ
∗
T+h−1|T + · · · , Φ̂∗pŶ ∗T+h−p|T + ε̂∗T+h,

where Ŷ ∗T+h|T = YT+h for h ≤ 0 and ε̂∗T+h is randomly drawn from F̂ε.

Step 6. Repeat steps 3-5 B times to obtain bootstrap replicates
{
Ŷ ∗,1Th|T , · · · , Ŷ

∗,B
Th|T

}
for each h.

Note that B denotes the number of bootstrap replications.
Then, the Bonferroni cube with at least (1− α)100% nominal coverage is obtained as

CT+h =
{
YT+h|YT+h ∈ ∪Ni=1

{
[q∗1(γ), q∗1(1− γ)]× · · ·

[
q∗p(γ), q∗p(1− γ)

]}}
,

where q∗i (γ) is the γth quantile of the generated bootstrap distribution of the ith element of
Ŷ ∗T+h|T .
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Remark 1. For a realization of AR(p) process {Y−p+1, · · · , YT }, let φ̂ and φ̂∗ represent the OLS
estimator of the true autoregressive parameter vector φ and its stationary bootstrap counterpart,
respectively. If ρ → 0 and Tρ → ∞ as T → ∞ then the Theorem 1 of Hwang and Shin (2013)
shows that

sup
x
|P
(√

T
[
φ̂∗ − φ̂

]
≤ x

)
− P

(√
T
[
φ̂− φ

]
≤ x

)
| p∗−→ 0

as T → ∞, where p∗ represents the convergence in conditional probability. Now, consider the
realization of N dimensional stationary VAR(p) process, {Y−p+1, · · · , YT }, defined as in (1).
Then, one can easily show that the stationary bootstrap OLS estimation has the same limiting
distribution as the OLS, Φ̂∗

p∗−→ Φ̂ asT → ∞, by extending the above theorem to the VAR(p)
case. It can also be shown that, conditional on {Y−p+1, · · · , YT }, the h-step ahead stationary
bootstrap replicate Ŷ ∗T+h|T obtained in Step 5 above converges weakly in probability to YT+h

as T → ∞, Ŷ ∗T+h|T
d−→ YT+h, by using the VAR case of Theorem 3.1 of Thombs and Schucany

(1990).

3 Numerical Results

We conduct a simulation study to investigate the finite sample performance of our proposed
stationary bootstrap (SB) forecast regions, and compare our results with the method proposed
by Fresoli et al. (2015). This comparison has been made through the coverage probability and
volume of the forecast region obtained by the Bonferroni forecast cube. We also calculate the
squared errors between the Bonferroni cubes obtained by the bootstrap methods and empirical
Bonferroni cube to find out which bootstrap method has the best matched forecast region with
the empirical one. It is worth mentioning that we also compared the performance of our proposed
method with the bootstrap method based on backward representation proposed by Kim (1999).
According to our results, it has similar performance with FRP, and therefore to save space,
we only report the comparative study with the proposed method and FRP. The experimental
design of our simulation study is similar to those of Fresoli et al. (2015) which is as follows. Three
bivariate processes: a stationary VAR(2), a persistent VAR(5), and a near-cointegrated VAR(10);
and three error distributions: Gaussian N(0, 1), t(5) (heavy tailed), and χ2(4) (skewed); as well
as two sample sizes T = 100 and T = 300 (see Appendix for the details) are considered. For each
setting M = 2000 Monte Carlo simulations with B = 1999 bootstrap resamples are performed.
The significance level α is set to 0.05 to obtain 95% Bonferroni cubes for future h = 1, · · · , 10
observations. The performance metrics are calculated based on the following setting.
• Simulate a bivariate VAR(p) series with the lag order parameters given in Appendix, and

generate R = 5000 future values YT+h for h = 1, · · · , 10.
• Calculate bootstrap future values Ŷ ∗,bT+h|T for h = 1, · · · , 10 and b = 1, · · · , B. Then, estimate

the coverage probabilities (Cp∗) of bootstrap forecast regions for Ŷ ∗T+h|T as follows:

Cp∗,h =
1

M

M∑
j=1

1

R

{
Y j
T+h|Y

j
T+h ∈ ∪

N
i=1

{
[q∗1(α), q∗1(1− α)]× · · ·

[
q∗p(α), q∗p(1− α)

]}}
.

• Estimate the volume of the bootstrap Bonferroni cube (VBoot) using the following equation:

VBoot =
1

M

M∑
j=1

[(
q∗,hj1 (1− α)− q∗,hj1 (α)

)
×
(
q∗,hj2 (1− α)− q∗,hj2 (α)

)]
.
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• Calculate the squared error between the bootstrap and empirical Bonferroni cubes as follows:

1

M

M∑
j=1

[(
qhj1(1− α)− q∗,hj1 (1− α)

)2
+
(
qhj1(α)− q∗,hj1 (α)

)2
+
(
qhj2(1− α)− q∗,hj2 (1− α)

)2
+
(
qhj2(α)− q∗,hj2 (α)

)2]
.

We note that all the calculations were carried out using R 3.3.2 on an Intel Core i7 6700HQ
2.6GHz PC, and the codes can be obtained from the author upon request.

The results are presented in Figures 1–3 when the sample size T = 100. Our findings show
that, regardless of the error distribution, the proposed method have similar coverage performance
with FRP when the bivariate data come from the stationary VAR(2) process, and both methods
have coverages close to nominal level; see the first row of Figure 1. When the data are generated
from the persistent VAR(5) and near-cointegrated VAR(10) processes the coverage performance
of the proposed method is better than the FRP especially for long-term forecast horizons as it is
shown in the second and third rows of Figure 1. In both cases, although FRP has good coverage
values for the YT+1 its performance gets worse when h ≥ 2. This deterioration may be caused by
the fact that the models under consideration are close to the non-stationary bounds especially
for the VAR(10) process. The proposed method, on the other hand, is somehow less affected by
this distortion. Therefore, our proposed method may be a better choice for long-term estimates
compared to FRP.

Figures 2 and 3 compare the proposed and FRPmethods in terms of the volume of Bonferroni
cubes obtained by both methods and their similarities to the empirical Bonferroni cube. Figure 2
shows that, although both methods have almost the same volume when the data is stationary
VAR(2) process, the proposed method clearly outperforms FRP when the data follow VAR(5)
and/or VAR(10) processes. Also, it is clear from Figure 3 that the Bonferroni cubes obtained
by our proposed method are more similar to the empirical Bonferroni cube compared to FRP’s
Bonferroni cube. In summary, when all the results are interpreted together, we can say that
similar and mostly better results can be obtained by the proposed method compared to FRP.

Moreover, we compare the proposed and FRP methods in terms of their computing times,
and Figure 4 presents the approximate computing times for various sample sizes based on B =
1999 bootstrap replications and only one Monte Carlo simulation. As it can be seen from Figure 4
that the proposed method has considerably less computing time than FRP. While the computing
time of FRP increases with the increasing number of parameters our proposed method has similar
computing times for different processes. This is due to fact that FRP uses a recursion to obtain
bootstrap resamples while the resamples are obtained directly from the data when using the
proposed method. Note that the results for the sample size T = 300 are qualitatively similar to
those presented in the paper and therefore not shown to save space. They are available upon
request.

4 Data Example

In this section, we study the forecasting performances of the proposed and FRP methods with
a real-world example, quarterly US Real Gross Domestic Product (GDP )-US Inflation rate
(ir)-US Civilian Unemployment rate (ur) data which is available at https://www.stlouisfed.
org/. The data set, which is consisted a total of 279 observations, observed from 1948Q1 to

https://www.stlouisfed.org/
https://www.stlouisfed.org/
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Figure 1: Monte Carlo averages of the coverages of Bonferroni forecast cubes based on the:
empirical (solid line), FRP (dashed line) and SB (dotted line) methods, for VAR(2) (first row),
VAR(5) (second row) and VAR(10) (third row) models when T = 100 and errors are Gaussian
(first column), t(5) (second column) and χ2(4) (third column) distributed.

2017Q3. The (GDPt) and (irt), respectively, are calculated as GDPt = log(GDPt/GDPt−1) and
irt = log(IPDt/IPDt−1), where IPD is the Implicit Price Deflator. To obtain out-of-sample
forecast cubes for the real data, we divide the full data into the following two parts: the model
is constructed based on the observations from 1948Q1 to 2015Q1 to calculate 10 steps-ahead
forecasts from 2015Q2 to 2017Q3. Table 1 reports the sample statistics, Augmented Dickey-
Fuller (ADF) stationarity and Jarque-Bera(JB) normality tests results along with p-values for
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Figure 2: Monte Carlo averages of the volumes of Bonferroni forecast cubes based on the: em-
pirical (solid line), FRP (dashed line) and SB (dotted line) methods, for VAR(2) (first row),
VAR(5) (second row) and VAR(10) (third row) models when T = 100 and errors are Gaussian
(first column), t(5) (second column) and χ2(4) (third column) distributed.

each of the series. The results are as follows: (i) JB test results show that the series are not
Gaussian either individually or jointly, (ii) small p-values of ADF test suggest that the series are
not stationary processes. Also, we perform the Ljung-Box (LB) test to test for auto-correlations
in the original and squared series and smaller p-values indicate that there is a dynamic dependence
in the conditional mean. Table 1 also presents the LB statistics of order 10 for the original (Q(10))
and squared series (Q2(10)), and they show that the dependence of the second order moments
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Figure 3: Monte Carlo averages of the squared errors of Bonferroni forecast cubes based on the:
FRP (dashed line) and SB (dotted line) methods, for VAR(2) (first row), VAR(5) (second row)
and VAR(10) (third row) models when T = 100 and errors are Gaussian (first column), t(5)
(second column) and χ2(4) (third column) distributed.

is not as significant as those of generated from the conditional mean dependence since the LB
statistics of the squared series are relatively smaller than the ones obtained from the original
series. All of our preliminary exploratory analyses suggested to use a VAR model to model the
series. The optimal lag order is determined by the AIC since it is proposed to determine the
best model for forecasting, and the results show that VAR(3) model is the optimal according to
AIC.
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Figure 4: Estimated computing times for FRP (dashed line) and SB (dotted line) when the data
are generated from VAR(2) (first row), VAR(5) (second row) and VAR(10) (third row) models.

For each combination of two series, we construct the bootstrap forecast cubes from 2015Q2

to 2017Q3 together with the true out-of-sample values which are denoted by a dot, and the
results are presented in Figures 5–7. Our findings show that the forecast cubes obtained by
both methods are similar and they include all of the observed out-of-sample points. Note that
the volumes of the two methods are almost the same for short-term forecast periods while the
proposed method produces slightly larger forecast cubes for long-term forecast periods compared
to FRP. This is due to fact that the residuals obtained from the proposed method are slightly
larger than those of FRP.
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Table 1: Sample statistics, ADF and JB test results of GDP , ir and ur, observed from 1948Q1

to 2015Q1, with p-values in brackets.
Series Mean Sd Skewness Kurtosis JB ADF Q(10) Q2(10)

GDP 0.79 0.96 2.90 1.39 27.38 -6.93 58.86 48.59
(0.00) (0.01) (0.00) (0.00)

ir 0.78 0.62 3.20 2.10 132.74 -3.45 825.06 614.66
(0.00) (0.04) (0.00) (0.00)

ur 5.84 1.65 3.54 -0.08 16.62 -3.42 1206.77 1167.12
(0.00) (0.05) (0.00) (0.00)

(GDP, ir, ur) 1.86 19.42 737.54
(0.00)

5 Conclusions and Discussion

In this study, we propose an asymptotically valid bootstrap procedure to obtain multivariate
forecast densities/regions for future values in vector autoregressive models by extending the
stationary bootstrap method proposed by Hwang and Shin (2013). We examine its finite sample
performance and compare with the existing method(s) by extensive Monte Carlo studies as well
as a real-data example. The prominent feature of the proposed method is that it is not based on
either backward or forward representations when generating the bootstrap sample of the original
data. Thus, it can be applied for both Gaussian and non-Gaussian models. Also, it requires
less computing time compared to existing bootstrap methods based on backward and/or forward
representations. Our Monte Carlo experiments show that the similar or even better results can
be obtained by the proposed procedure; (i) when the errors are Gaussian and/or the data is
clearly stationary the performances of the existing and our method are almost the same; (ii) in
case of non Gaussian errors and/or persistent or near cointegrated models, on the other hand, the
results produced by the proposed method are better than those of existing models especially for
long-term forecast regions, so that our method has better coverage performance with less volume.
To summarize, considering its advantages the proposed procedure can be a good alternative to
obtain forecast densities in VAR models.

Appendix: Parameters for the Simulation Section

Stationary VAR(2) model:

µ =

[
0.0
0.0

]
, Φ1 =

[
0.9 0.0
−0.5 −0.7

]
, Φ2 =

[
−0.2 0.0
0.8 −0.1

]
, Σε =

[
1.0 0.5
0.5 1.0

]
.

The dominant root of |I2 − Φ1(z
−1) − Φ1(z

−2)| = 0.0 is 0.5 which is far from the non-
stationary bound.

Stationary VAR(5) model:

µ =

[
0.0053
0.0018

]
, Φ1 =

[
0.6337 −0.3424
0.4688 0.6755

]
, Φ2 =

[
−0.0401 0.3005
0.0100 0.1967

]
, Φ3 =

[
0.4806 −0.5201
0.2582 −0.2529

]
,

Φ4 =

[
0.2952 0.2041
0.2734 0.0241

]
, Φ5 =

[
−0.2299 0.1216
−0.1449 0.3240

]
, Σε = 10−3 ×

[
0.5412 0.4045
0.4045 0.4649

]
.
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Figure 5: 95% Bonferroni cubes of FRP (black area) and SB (grey area) for h = 1, · · · , 10
steps-ahead forecasts of GDP-growth and Inflation.

The dominant root of |I2 − Φ1(z
−1)− · · · − Φ5(z

−5)| = 0.0 is 0.89.
Near-cointegrated VAR(10) model:

µ =

[
0.1121
0.1116

]
, Φ1 =

[
1.1763 0.0542
0.7126 1.2874

]
, Φ2 =

[
−0.2624 −0.0668
−0.7618 −0.3596

]
,

Φ3 =

[
0.0250 −0.0160
0.0305 −0.0168

]
, Φ4 =

[
0.0000 0.0939
0.0830 −0.0510

]
, Φ5 =

[
0.1485 −0.0512
0.3678 −0.0656

]
,

Φ6 =

[
−0.2795 −0.0278
−0.7140 0.1410

]
, Φ7 =

[
0.2671 −0.1424
0.3072 −0.3053

]
, Φ8 =

[
−0.0786 0.4398
0.2189 0.4045

]
,
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Figure 6: 95% Bonferroni cubes of FRP (black area) and SB (grey area) for h = 1, · · · , 10
steps-ahead forecasts of GDP-growth and Unemployment rate.

Φ9 =

[
−0.1181 −0.3490
−0.1909 −0.2209

]
, Φ10 =

[
0.0915 0.0828
−0.0229 0.0071

]
, Σε = 10−4 ×

[
0.025 0.009
0.009 0.387

]
.

The dominant root of |I2 − Φ1(z
−1)− · · · − Φ10(z

−10)| = 0.0 is 0.97.
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