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Abstract

We propose a varying coefficient Susceptible-Infected-Removal (vSIR) model that allows changing
infection and removal rates for the latest corona virus (COVID-19) outbreak in China. The vSIR
model together with proposed estimation procedures allow one to track the reproductivity of the
COVID-19 through time and to assess the effectiveness of the control measures implemented
since Jan 23 2020 when the city of Wuhan was lockdown followed by an extremely high level of
self-isolation in the population. Our study finds that the reproductivity of COVID-19 had been
significantly slowed down in the three weeks from January 27th to February 17th with 96.3% and
95.1% reductions in the effective reproduction numbers R among the 30 provinces and 15 Hubei
cities, respectively. Predictions to the ending times and the total numbers of infected are made
under three scenarios of the removal rates. The paper provides a timely model and associated
estimation and prediction methods which may be applied in other countries to track, assess and
predict the epidemic of the COVID-19 or other infectious diseases.
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1 Introduction

The Corona Virus Disease 2019 (COVID-19) has created a profound public health emergency in
China and has spread to 25 countries so far (World Health Organization, 2020). It has become
an epidemic with more than 76,000 confirmed infections and 2,244 reported deaths worldwide as
on February 20 2020. The COVID-19 is caused by a new corona viruses that is genetically similar
to the viruses causing severe acute respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS). Despite a relatively lower fatality rate comparing to SARS and MERS, the
COVID-19 spreads faster and infects much more people than the SARS-03 outbreak.

The city of Wuhan, the origin of the outbreak, has been locked up to reduce population
movement since January 23 in an effort to stop the spread of the epidemic, followed by more
than 50 prefecture level cities (as on 8th of February) and countless number of towns and villages
in China. A high percentage of the population are exercising self-isolation in their homes. The
spring festival holiday period had been extended with all schools and universities closed and all
students staying where they are indefinitely. The country is virtually in a stand-still, and the
economy and people’s livelihood have been severely affected by the epidemic.
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There is an urgent need to assess the speed of the disease transmission and to check if
the existing containment measures have successfully slowed down the spread of the disease or
not. The Susceptible-Infected-Removal (SIR) model (Kermack and McKendrick, 1927) and its
generalizations, for instance the Susceptible-Exposed-Infected-Removal (SEIR) model (Hethcote,
2000) with four or more compartments are commonly used to model the dynamics of infectious
disease outbreaks. See (Becker, 1977; Becker and Britton, 1999; Yip and Chen, 1998; Ball and
Clancy, 1993) for statistical estimation and inference for stochastic versions of the SIR model.
SEIR models have been used to produce early results on COVID-19 in (Wu et al., 2020; Read
et al., 2020; Tang et al., 2020), which produced the first three estimates of the basic reproduction
number R0: 2.68 by (Wu et al., 2020), 3.81 by (Read et al., 2020) and 6.47 by (Tang et al., 2020).
The R0 is the expected number of infections by one infectious person over his/her infectious
period at the start of the epidemic, which is closely connected to the effective reproduction
number Rt. The latter Rt is the expected number of infections by one infected over infectious
period at time t of the epidemic. Both R0 and Rt are key measures of an epidemic. For fixed
coefficient models, if R0 < 1, the epidemic will die down eventually with the speed of the decline
depends on the size of R0; otherwise, the epidemic will explode until it runs out of its course.

The SEIR models that was employed in the above three cited works for the COVID-19
assume constant model coefficients, implying a constant regime of transmission during the course
of the epidemic. This is idealistic for modeling COVID-19 as it cannot reflect the intervention
measures by the authorities and the citizens, which should have made the infectious rate (β)
and the effective reproduction number (Rt) varying with respect to time. Here, the effective
reproductive number Rt is the average number of secondary infections made by each infectious
case during an epidemic, which contrasts the basic reproductive number R0 that measures the
average number of secondary infections at the beginning of an epidemic.

To reflect the changing dynamic regimes due to the strong government intervention and the
self protective reactions by citizens, we propose a varying coefficient SIR (vSIR) model. The
vSIR model is easy to be implemented via the locally weighted regression approach (Cleveland
and Devlin, 1988) that produces estimates with desired smoothness, and yet is able to capture
the changing dynamics of COVID-19’s reproduction, with guaranteed statistical consistency and
needed standard errors. The consistent estimator and its confidence interval are proposed for
estimating the trend of R, assessing the effectiveness of infection control, and predicting the
ending time and the final number of infection cases with 95% prediction intervals.

As COVID-19 is quickly spreading outside China, the vSIR model and the associated esti-
mation and prediction methods may be applied to other countries to track, assess and predict
the epidemic of the COVID-19 or other infectious diseases.

2 Main Results

By applying the vSIR model, we produce daily estimates of the infectious rate β(t) and the
effective reproduction number RDt (t denotes time) based on three values of infectious duration
D: 7, 10.5 and 14 days for 30 provinces and 15 major cities (including Wuhan) in Hubei province
from January 21 or a later date between January 24-29 depending on the first confirmed case to
February 17.
• Despite the total number of confirmed cases and the death are increasing, the spread of

COVID-19 has shown a great slowing down in China within the two weeks from January 27
to February 17 as shown by 96.3% and 95.1% reductions in the effective reproduction number
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Rt among the 30 provinces and the 15 cities in Hubei, respectively.
• The average R14

t (based on 14-day infectious duration) on January 27th was 6.14 (1.49) and
7.59 (2.38), respectively, for the 27 provinces and the 7 Hubei cities with confirmed cases by
January 23rd. The numbers in the parentheses are the standard error. One week later on
February 3rd, the R14

t was averaged at 2.18 (0.67) for the 30 provinces and 2.84 (0.59) for
the 15 Hubei cities, representing 64.5% and 62.6% reductions, respectively, over the 7 days.
On February 10th, the average R14

t dropped further to 0.86 (0.38) for the 30 provinces and
1.23 (0.55) for the 15 Hubei cities, which were either below or close to the critical threshold
level 1.
• On February 17th, the average R14

t has reached 0.23(0.15) and 0.37(0.24) for the 30 provinces
and the 15 Hubei cities, with 22 provinces’ and 8 Hubei cities’ R14

t being statistically sig-
nificantly below 1 for more than 7 days. These indicate a further slowing down in the
re-productivity of COVID-19 in China in the week from February 10 to 17.
• The profound slowing down in the reproductivity of COVID-19 can be attributed to a series

of containment measures by the government and the public, which include cutting off Wuhan
and other cities from January 23, a rapid public awareness of the epidemic and the extensive
self protection taken and high level of self isolation at home exercised over a much extended
Spring Festival holiday period.
• There are increasing numbers of provinces and cities in Hubei whose 14-day Rt has been

statistically below 1, as detailed in Table 1, which would foreshadow the coming of the
turning point for containment of the epidemic, if the control measures implemented since
January 23 can be continued.
• If the recovery rate can be increased to 0.1 meaning the average recover time is 10 days after

diagnosis, the number of infected patients I(t) will be dramatically reduced in March, and
the epidemic will end in April for non-Hubei provinces and end in June for Hubei.

Table 1: The reproduction number RDt at two infectious durations: 10.5 and 14 days, for the 30
mainland provinces and 15 cities in Hubei province on February 10th with extended results on
February 17th. The symbols + (−) indicate that the R14

t was significantly above (below) 1 at 5%
level of statistical significance, and the numbers inside the square brackets were the consecutive
days the R14

t were significantly below 1. The column ∆R gives the percentages of decline in
the R14

t from the beginning of analysis to February 10th (the first two weeks of the analysis).
The columns ∆R(1st), ∆R(2nd) and ∆R(3rd) are the percentages of decline in the first week
(January 27 to February 3rd), the second week (February 3-10), and the third week (February
10-17), respectively.

Province/City R10.5
t R14

t ∆R ∆R(1st) ∆R(2nd) ∆R(3rd)

Wuhan 1.99+ 2.66+ 58.7% 45.9% 23.7% 72.5%
Ezhou 1.64+ 2.18+ 80% 79.3% 3.6% 67.7%
Hubei 1.48+ 1.98+ 74.2% 58.2% 38.3% 69.7%

Tianmen 1.33+ 1.78+ 75% 67.4% 23.4% 52.5%
Guizhou 1.25+ 1.67+ 62.4% 9.3% 58.5% 91.5%
Xiantao 0.99 1.32 76.9% 46.4% 57% 71.9%

Heilongjiang 0.95 1.27+ 81.8% 54.3% 60.3% 62.6%
Hebei 0.94 1.25+ 85.4% 82.4% 16.7% 70.5%

(Continued on the next page)



458 Sun, H. et al.

Table 1 — Continued from the previous page

Province/City R10.5
t R14

t ∆R ∆R(1st) ∆R(2nd) ∆R(3rd)

Xinjiang 0.9 1.2+ 75.6% 60.7% 37.9% 53.1%
Enshizhou 0.86−[5] 1.14+ 74.1% 60.3% 34.6% 76%
Jingzhou 0.85−[1] 1.14+ 84.8% 50.5% 69.3% 76.9%
Gansu 0.8 1.07 75.1% 47.8% 52.3% 100%
Jingmen 0.79−[1] 1.05 88.3% 77.1% 49.2% 84.1%
Huangshi 0.79−[1] 1.05 78.3% 31.2% 68.4% 83.6%
Anhui 0.74−[1] 0.99 88.3% 71.7% 58.7% 77.6%
Shanxi 0.74−[2] 0.98 86.7% 69.6% 56.1% 87.1%
Ningxia 0.73 0.97 84.9% 75.8% 37.6% 75.7%
Shandong 0.73−[2] 0.97 90.3% 84.5% 37.1% 80.3%
Jiangsu 0.72−[3] 0.96 87.1% 70.5% 56.1% 72.1%
Xianning 0.71−[4] 0.95 70.7% 21.6% 62.6% 33.6%
Shiyan 0.71−[1] 0.94 89.1% 72.4% 60.3% 67.5%
Jilin 0.7 0.93 80.4% 17.6% 76.1% 82.5%

Yichang 0.69−[3] 0.92 87% 56.6% 70% 75.7%
Huanggang 0.69−[3] 0.92 88.9% 60.7% 71.8% 89%
Tianjin 0.69−[4] 0.91 82.9% 51.8% 64.6% 64%
Hainan 0.68−[1] 0.91 80.9% 65.2% 45.2% 96.1%
Guangxi 0.66−[5] 0.88 81.6% 64.9% 47.8% 72.1%
Xiangyang 0.63−[3] 0.84−[1] 88.4% 57.9% 72.4% 80.8%
Sichuan 0.62−[5] 0.83−[2] 89.4% 78.5% 50.7% 47.6%
Jiangxi 0.61−[2] 0.82 90.8% 70.9% 68.5% 79.6%
Xiaogan 0.6−[1] 0.81 88.9% 61.5% 71.3% 50.1%
Hunan 0.57−[3] 0.76−[2] 91.5% 77% 63.2% 90.4%
Henan 0.56−[2] 0.75−[1] 93.2% 78.8% 67.8% 64.2%
Suizhou 0.52−[2] 0.69−[2] 88.2% 40.9% 80% 65.5%

Chongqing 0.51−[4] 0.68−[3] 90.4% 75% 61.6% 73.9%
Shaanxi 0.51−[3] 0.68−[2] 86.5% 63% 63.6% 72.9%

Neimenggu 0.49−[3] 0.66−[2] 82.4% 43% 69.1% 27.9%
Fujian 0.49−[6] 0.66−[4] 90.5% 76.2% 60% 76.9%

Guangdong 0.45−[3] 0.61−[2] 88.2% 54.4% 74.2% 62%
Liaoning 0.45−[6] 0.6−[2] 89.3% 72.7% 61% 81.7%
Beijing 0.45−[4] 0.6−[2] 90.3% 59.2% 76.2% 65.1%
Shanghai 0.34−[4] 0.46−[2] 92.1% 68% 75.2% 53.4%
Zhejiang 0.31−[4] 0.42−[3] 94.3% 77.9% 74.2% 86.3%
Yunnan 0.28−[7] 0.38−[5] 96.2% 86.8% 71.5% 30.8%
Qinghai 0.02−[4] 0.03–[3] 98.9% -1.6% 98.9% 100%

Average (sd) 0.74 (0.35) 0.98 (0.47) 85.3% 64.2% 59% 71.6%

3 Time-varying coefficient SIR model

Let S(t), I(t) and R(t) be the counts of susceptible, infected and removed (including dead)
persons in a given city or province at time t, respectively. Let N be the total population of
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the city/province. We propose a varying coefficient Susceptible-Infected-Removed (vSIR) model
for the conditional means of the Poisson increments ∆I(t) and ∆R(t) given I(t) and R(t).
This Poisson-vSIR framework permits estimating the parameters and the effective reproduction
number Rt for the dynamics of COVID-19, which are then used for predicting the future spread
of the disease.

The SIR model (Kermack and McKendrick, 1927) is a commonly used epidemiology model
for the dynamic of susceptible S(t), infected I(t) and recovered R(t) as a system of ordinary
differential equations (ODEs). Here we consider a generalized version of the SIR model in
that the infectious rate β and the removal rate γ may vary with respect to time so that the
deterministic ODEs are

dS(t)

dt
= −β(t)I(t)

S(t)

N
,

dI(t)

dt
= β(t)I(t)

S(t)

N
− γ(t)I(t), (1)

dR(t)

dt
= γ(t)I(t),

where β(t) and γ(t) are unknown infection and the removal rate functions, respectively. Once
an individual is removed, including dead, the individual can not return to the susceptible group.

The rationale for using a time-varying β(t) function, rather than a constant β, is that β(t) is
the average rate of contact per unit time multiplied by the probability of disease transmission per
contact between a susceptible and an infectious subject. Due to an increasing public awareness
of the epidemic and the control measures as mentioned earlier, both the transmission probability
and the contact rate have been largely reduced. These favor for a time-varying β(t), which are
also confirmed by the sharp declined in RDt = β(t)D, where D denote the infectious durations
in Figures 1 and 2. The removal rate also changes over time as treatments improve over time
as shown in Figure 3. However, Figure 3 shows γ(t) is much slowly changing for most of the
provinces, which led us to treat γ(t) = γ at the early stage of the outbreak, whose value gradually
increased as the recover rate improved as the time progress and better treatments are available.

The deterministic vSIR model as specified by the ODEs in (1) specifies the conditional means
of the Poisson increments ∆I(t) and ∆R(t) given S(t), I(t) and R(t) at each discrete time point
t. This conditional mean specification leads to a Poisson-vSIR model framework, which can be
used to construct conditional likelihood for (β(t), γ(t)) over moving time windows and leads to
statistical inference for the effective reproduction number estimation and its standard error. The
Poisson-vSIR framework is also the basis for the bootstrap re-sampling algorithm that we will
propose for generating predictive intervals.

SEIR model is an extension of SIR with an added compartment E for the exposed between
S and I. A time-varying SEIR model (vSEIR) satisfies the ODEs

dS(t)

dt
= −β(t)I(t)s(t),

dE(t)

dt
= β(t)I(t)s(t)− α(t)E(t), (2)

dI(t)

dt
= α(t)E(t)− γ(t)I(t),

dR(t)

dt
= γ(t)I(t),
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(a) RDt for 30 provinces
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(b) RDt for 15 cities in Hubei
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Figure 1: Time series of the reproduction number RDt at three infectious durations: D = 7 (red),
10.5 (orange), 14 (blue), for the 30 mainland provinces (a) and the 15 cities in Hubei province
(b) from Jan 21 to Feb 17 2020. The black horizontal line is the critical threshold level 1.

where α(t) is the confirmation or diagnosis rate from E to I. The ODEs in (2) may specify
the conditional means of the independent Poisson increments. However, like the SIR model, the
states before I are not infectious.

The basic and the effective reproduction numbers (RN), R0 and Rt, are important notions
in epidemiology as they quantify the reproduction ability of an epidemic at the start (R0) and
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(a) R14
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Figure 2: Elevated 95% confidence intervals (black) of the 14-dayRt for the 30 mainland provinces
(a) and the 15 Hubei cities (b) on Jan 27 (red), Feb 3 (orange), Feb 10 2020 (green) and Feb 17
(blue). The black horizontal lines mark the critical threshold 1.

during (Rt) an epidemic. For both the SIR and SEIR models, R0 = R = β/γ (Hethcote,
2000). We will demonstrate that for the vSIR model, R0 = β(0)/γ(0) and the effective RN
Rt = β̃(t)/γ(t) at time t where β̃t = β(t)s(t) and s(t) = S(t)/N . The susceptible rate s(t) is
approximately 1 at the start of an epidemic. However, s(t) < 1 has to be taken into account as
the number of susceptibles declines.
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Figure 3: The estimated γ̂(t) from the varying coefficient SIR model (1) for the data to Feb 17th
2020 for 30 provinces.

Let I(0) be the initial number of infected, according to the Poisson-vSIR model, at the start
of the epidemic, conditioning on I(0), in average I(1) = (1 − γ(0) + β(0))I(0) > I(0) if and
only if 1 − γ(0) + β(0) > 1, which is if and only if R0 = β(0)/γ(0) > 1. In general, at time t,
conditioning on I(t− 1), in average I(t) = (1− γ(t− 1) + β̃(t− 1))I(t− 1) > I(t− 1) if and only
if 1− γ(t− 1) + β̃(t− 1) > 1, which is the case if and only if the effective RN Rt−1 > 1. Thus,
indeed, Rt can track the trend of an epidemic being expanding or shrinking. A similar argument
can be made under the vSEIR model.

4 Data

Daily records of infected, dead and recovered patients released by National Health Commission of
China (NHCC) are obtained from the NHCC website, with the first confirmed record for Wuhan
on December 8th, 2019, followed by 30 provinces in mainland China and 15 cities in Hubei
province where Wuhan is the capital city. We did not consider data from Tibet due to very small
number of cases. Due to severe under-reporting in the first 39 days of the epidemics in Wuhan
and Hubei, we consider data from January 16th for Wuhan and Hubei. For other provinces and
Hubei cities, the starting dates for data are those of first confirmed case, and the analysis date
starts four days after to accommodate the estimation approach for the infectious rate β(t). The
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latest start data for analysis was January 29th for Qinghai province and three cities in Hubei
province. The second last analysis starting date was January 28th with two provinces and five
Hubei cities. Table A1 in the Supplementary Information (SI) provides the starting dates of the
data records and analysis for each province and Hubei city.

To guide for the choice of the infectious duration D used when calculating the reproduction
number, we consider two public data sources. The first one is obtained in Shenzhen Government
Online, which contain datasets released by the Shenzhen Municipal Health Commission from
January 19th to February 13th (Shenzhen Municipal Affairs Service Data Administration, 2020).
One dataset provides information on the confirmed cases that include the time of onset, time
of hospital admission, cause of illness and other information of 391 cases, consisting 188 males
and 203 females. The admission time of these cases ranged from January 9th to February 11th.
Another Shenzhen dataset reports the discharge times for 94 recovered cases, contained in the
former dataset. The second data source comes from Shaoyang Municipal Health Committee
(Shaoyang Municipal Health Commission, 2020) with a dataset of 100 confirmed cases released
on February 14 that includes 48 male and 52 female patients with the onset dates ranging from
January 12 to February 11.

5 Estimation and Confidence Intervals

The reported numbers of infected I(t) and removed cases R(t) are subject to measurement errors.
To reduce the errors, we apply a three point moving average filter on the reported counts to obtain
Ī(t) = 0.3I(t − 1) + 0.4I(t) + 0.3I(t + 1) for 2 ≤ t ≤ T − 1 where T is the latest time point of
observation. In our analysis, T was February 20 of 2020. For t = 1 or T , we apply two point
averaging with 7/10 weight at t = 1 or T , and 3/10 for t = 2 or T − 1. The above three-day
moving window was chosen by assuming a possible one day reporting error, longer weight scheme
may be applied, for instance a five day moving window may be used. The coefficient weights
over the three days were made quite flat to reflect the nature of the reporting errors. Other
weights can be considered. We expect the results would not be significantly affected by different
weighting schemes. Apply the same filtering on the recovered process R(t) and obtain R̄(t). To
simplify the notation, we denote the filtered data Ī(t) and R̄(t) as I(t) and R(t) respectively,
wherever there is no confusion.

Hubei started to report the “clinically diagnosed" cases on February 12th (13th for city
Xianning) which created spikes in the newly reported cases. We applied a one-side linear filter
that re-distributes the spikes in the Hubei cities and Hubei to the previous 7 days with decreasing
weights ranging from 7/28 to 1/28.

Let N(t) = I(t) +R(t) denote the cumulative number of diagnosed cases, and let ∆N(t) =
N(t+ 1)−N(t) and ∆R(t) = R(t+ 1)−R(t) denote the daily changes of N(t) and R(t). Condi-
tional on I(t), (∆N(t),∆R(t)) are conditionally independent Poisson random variables. There
is a slight confusion between N(t) and N , as the latter is used to denote the total population
size.

We consider the likelihood for the Poisson-vSIR process framework for parameter estimation
by treating β and γ as fixed and later we will relax it to allow they vary over a window of time t.
Then,

∆N(t) ∼ Poisson {β(t)S(t)I(t)/N} and ∆R(t) ∼ Poisson {γ(t)} .
The likelihood function for (∆N(t),∆R(t)) given I(t) and S(t) is

L(β, γ) = f1(∆N(t)|I(t), S(t))× f2(∆R(t)|I(t))
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where f1 and f2 are the Poisson density functions with mean β(t)s(t)I(t) and γ(t), respectively,
where s(t) = S(t)/N . The log likelihood based on the increments at t is

l(β, γ) ∝ −β(t)s(t)I(t) + ∆N(t) log{β(t)s(t)I(t)} − γ(t)I(t) + ∆R(t) log{γ(t)I(t)}.

As the population of each province/city is large and the number of total infected patients
is still relatively small, the ratio S(t)/N appeared in (1) is very close to 1. By approximating
s(t) = 1, the likelihood score equations are

∂l

∂β
= −I(t) + ∆N(t)

β(t) (3)

∂l

∂γ
= −I(t) + ∆R(t)

γ(t) (4)

It can be checked that the score functions have (approximate) zero means. The approximation
of S(t)/N = 1 is just to simplify the expression as everything carries through by using β̃(t) =
β(t)s(t).

While one can use the above likelihood based inference, an equivalent approach we use in
our analysis is based on the (approximate) solution for I(t) via (5)

I(t) ≈ I(t1) exp{(β(t)− γ(t))(−t1)}, (5)

for t1 = t − w + 1, · · · , t and a window w > 0 which satisfies w → ∞ and w/T → 0. Here T
is the total number of observational time for the processes. Take logarithm transform on (5),
log{I(t)} ≈ log{I(t1)}+ (β(t)−γ(t))(t− t1). We propose estimating β(t)−γ(t) by a local linear
regression of log{I(t)} on t− t1. The above log-linear regression may be viewed as a version of
the Poisson increment mean model by noting that log{I(t)} − log{I(t1)} ≈ I(t)−I(t1)

I(t1) which is
approximately (β(t)− γ(t))(t− t1) in the mean.

Let ̂β(t)− γ(t) be the estimated slope from the local linear regression, and V̂ar(β(t)− γ(t))

be the estimated variance of ̂β(t)− γ(t). Their close form expressions are provided in Section
S.1 in SI.

Let ∆δRt = Rt+δ−Rt for t = 1, · · · , T −δ. From the second score equation (4), we estimate
γ(t) by the local least square fitting of ∆δRt on I(t) without intercept. Let γ̂(t) and V̂ar(γ̂(t))
be the estimator of γ and its corresponding estimated variance, respectively. Their expressions
are provided in SI.

Then, β̂(t) = ̂β(t)− γ(t) + γ̂(t) is the estimate for the varying coefficient β(t) in (1). The
standard error of β̂(t) can be obtained as

SEβ(t) =
{
V̂ar( ̂β(t)− γ(t)) + V̂ar(γ̂(t)) + 2Cov( ̂β(t)− γ(t), γ̂(t)

}1/2
.

The 95% confidence interval for β(t) can be constructed as

(β̂(t)− 1.96SEβ(t), β̂(t) + 1.96SEβ(t)).

In the implementation, we chose δ = 1 and w = 5. We had experimented other difference order
δ and found that δ = 1 offered better stability in the γ estimation. As the infection rates β(t)
for all provinces declined quite rapidly over the study period, choosing w = 5 reflect such a
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change. One may use the cross-validation method to choose w and make it different for different
provinces as well.

To assess the goodness of fitting, Figure S1 in SI shows the observed infected number I(t)
versus the fitted values by the proposed varying coefficient SIR model for 30 provinces in China.
It demonstrates the proposed method is well suitable for the dynamics of COVID-19 outbreak.
Figure S2 in SI plots the estimated the effective reproductive number R14

t , calculated as R14
t =

β̂(t)× 14, with its 95% confidence interval for 30 provinces in China.

6 Effective Reproduction Number

The effective reproduction number Rt is the most important parameter in determining the state
of an epidemic. It measures the average number of infection made by an infectious person during
the course of his/her being infectious. If Rt < 1(> 1) for t larger than a t0, then the epidemic will
die down eventually (explode). There are two widely adopted definitions of R(t). One is based
on the average duration of infection of the disease, and the other is via the removal rate γ(t).

At a date t, the effective reproduction number based on an average infectious duration D is
RDt = β(t)D where β(t) is the daily infection rate at t. We do not adopt the version involving
γ, the removal rate, since its estimation is highly volatile at the early stage of an epidemic. A
general version of R(t) may be defined as

∫ t+D2

t−D1
β(u)du where positive D1 and D2 represent the

infectious durations before and after diagnosis, respectively. The RDt given above can be viewed
as an approximation by the Mean Value Theorem in calculus with D = D1 +D2.

Research works (Li et al., 2020; Guan et al., 2020; Chen et al., 2020) so far on COVID-19
have informed a range of duration for incubation, from onset of illness to diagnosis and then to
hospitalization. The average incubation period from the three studies ranged from 3.0 to 5.2
days; the median duration from onset to diagnosis was 4 days (Guan et al., 2020); and the mean
duration from onset to first medical visit and then to hospitalization were 4.6 and 9.1 days (Li
et al., 2020), respectively. Based on a data sample of 391 cases from Shenzhen, the average
incubation period was 4.46 (0.26) days and the average duration from onset to hospitalization
were 3.9 (0.19) days, respectively, where standard error is reported in the parentheses. Another
dataset of 100 confirmed cases in Shaoyang (Hunan Province) revealed the average durations
from onset to diagnosis and from diagnosis to discharge were 5.67 (0.39) and 10.12 (0.43) days,
respectively. There is a recent revelation (Guan et al., 2020) that asymptomatic patients can be
infectious, which would certainly prolong the infectious duration.

There are much variation in the medical capability in timely diagnosis and hospitalization
(thus quarantine) of the infected across the country. Thus, the infectious duration D would vary
among the provinces and cities, and would change with respect to the stage of the epidemic as
well.

Given the diverse range of infectious duration across the provinces and cities, in order to
standardize and make the effective reproduction number Rt readily comparable, we calculated
the RDt based on three levels of D: 7, 10.5 and 14 days, which represent three scenarios of
responsiveness in diagnosing, hospitalization and hence quarantine of the infected. Calculation
of the Rt at other duration can be made by inflating or deflating a RDt proportionally to reflect
a local reality.
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7 Reproductivity of COVID-19 in China

By calculating the time-varying infection rate function β(t), we present in Figures 1 the time
series of estimated RDt at the three levels of D for the 30+15 provinces/cities from late January
to February 17th. Figure 2 displays four cross sectional R14

t and their confidence intervals on
January 27th, February 3rd, 10th and 17th, respectively.

Figure 1 reveals a monotone decreasing trend for almost all the provinces and cities with
only exceptions for Hubei, Guizhou, Jilin, Neimenggu, and Qinghai. Even for those excep-
tional provinces, the recent trend is largely declining. The non-monotone pattern for non-Hubei
provinces were largely due to relative small number of infected cases and waves of introduced
infections. However, the one for Hubei and Wuhan suggests low data quality and in particularly
under reporting and reporting delay. The epidemic statistics from Hubei and the city of Wuhan
before January 21th were severely incomplete and with irregular patterns, as millions of people
fled from Wuhan before the lockdown.This was the reason we start Hubei’s analysis from January
21th.

The average R14
t among the 27 provinces (with confirmed cases on and prior to January

23rd) was 6.14 (1.49), and 7.59 (2.38) for 7 of the 15 Hubei cities on January 27. These levels
were comparable to the level of R (6.47) given in (Tang et al., 2020).

One week later on February 3rd, R14
t was averaged at 2.18 (0.67) for the 30 provinces and

2.84 (0.59) for the 15 Hubei cities, indicating that cutting off Wuhan and other cities, and the
start of wearing face masks and self isolation at home from January 23th had contributed to
64.5% and 62.6% reduction in the R14

t . In the following week starting from February 4th, the
average R14

t came down to 0.86 (0.38) for the 30 provinces and 1.23 (0.55) for the 15 Hubei
cities on February 10th, representing further 60.5% and 56.7% reductions, respectively, during
the second week. This reflects the beneficial effects of the continued large scale self-isolation
within the extended spring festival holiday period.

Table 1 provides the reproduction number RDt at the two durations on February 10th. It
shows that 5 provinces and 5 Hubei cities’ R14

t were significantly above 1 (at 5% significance
level). There are 14 provinces and 2 Hubei cities’ R14

t were significantly below 1, which were 1
and 1 more than those a day earlier on February 9th, and 9 and 2 more than those on February
8th, respectively. If we use the shorter D = 10.5, 22 provinces and 11 Hubei cities had been
significantly below 1 for 1-7 consecutive days. These indicated that the reproduction number Rt
has showed signs of crossing below the critical threshold 1 in increasing number of provinces and
cities in Hubei around February 8-10. An updated Table 1 for February 17th are available in
Table 2, which showed further improvement since February 10.

On February 17th, R14
t of all provinces and cities under consideration have all been statis-

tically significantly below 1, among which 22 provinces and 8 Hubei cities had been for at least
seven consecutive days.

Given the significant decline in the reproduction numbers, it was time to discuss the turning
point for COVID-19 for China. If a province or city’s RDt started to be below 1 significantly
(at 5% level), we would say the province or city have showed signs of the turning point. Given
the uncertainty with the data records, especially those large variation in daily infected numbers
coming out of Wuhan and Hubei, the turning point of the epidemic would be confirmed if RDt
have been significantly below 1 for D1 days, where D1 is the period of infection before diagnosis,
assuming all diagnosed cases can be quarantine immediately. Based on the results in (Li et al.,
2020; Guan et al., 2020; Chen et al., 2020), D1 = 7 may be considered. Then, based on this
criterion, some of the 30+15 provinces/cities had already reached the turning point on February
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Table 2: The reproduction number RDt at two infectious durations: 10.5 and 14, for the 30
mainland provinces and 15 cities in Hubei province on February 17th. The symbols + (−) indicate
that the R10.5

t (R14
t ) was significantly above (below) 1 at 5% level of statistical significance, and

the numbers inside the square brackets were the consecutive days the R10.5
t (R14

t ) were significantly
below 1.
Province/City R10.5

t R14
t Province/City R10.5

t R14
t

Wuhan 0.55−[9] 0.73−[8] Shanxi 0.09−[16] 0.13−[14]
Ezhou 0.52−[3] 0.69−[2] Yichang 0.17−[17] 0.22−[14]

Tianmen 0.63−[9] 0.85 Yunnan 0.2−[21] 0.26−[19]
Hubei 0.43−[3] 0.56−[2] Anhui 0.16−[8] 0.21−[7]
Sichuan 0.33−[19] 0.44−[16] Xianning 0.47−[8] 0.63−[8]
Xiantao 0.28−[14] 0.37−[13] Suizhou 0.18−[16] 0.25−[16]
Tianjin 0.25−[11] 0.33−[10] Shandong 0.14−[12] 0.19−[9]

Heilongjiang 0.34−[7] 0.46−[5] Guangdong 0.17−[10] 0.23−[9]
Shiyan 0.23−[15] 0.31−[14] Xiangyang 0.12−[17] 0.16−[15]

Neimenggu 0.36−[17] 0.47−[16] Zhejiang 0.04−[18] 0.06−[17]
Xiaogan 0.28−[14] 0.37−[13] Enshizhou 0.2−[12] 0.27−[4]
Xinjiang 0.42−[12] 0.56−[10] Huanggang 0.07−[10] 0.09−[7]
Beijing 0.13−[11] 0.18−[9] Guizhou 0.11−[4] 0.15−[3]
Jingzhou 0.19−[8] 0.25−[3] Jingmen 0.12−[8] 0.16−[4]
Shaanxi 0.14−[17] 0.18−[16] Gansu 0−[7] 0−[6]

Chongqing 0.13−[11] 0.17−[10] Hainan 0.03−[8] 0.04−[7]
Henan 0.2−[9] 0.26−[8] Hunan 0.02−[10] 0.07−[9]
Hebei 0.26−[5] 0.35−[3] Ningxia 0.18−[9] 0.24−[9]

Guangxi 0.17−[12] 0.23−[7] Huangshi 0.13−[8] 0.17−[7]
Shanghai 0.16−[18] 0.21−[16] Jiangxi 0.12−[9] 0.16−[7]
Jiangsu 0.2−[10] 0.26−[6] Liaoning 0.08−[20] 0.11−[16]
Jilin 0.11−[7] 0.15−[7] Qinghai 0−[4] 0−[4]
Fujian 0.11−[13] 0.15−[11]

17, and more would follow in the coming days according to latest Table 2

8 Prediction for Infection Rate and State Variables

As RDt = β(t)D, predicting β(t) is equivalent to predicting RDt . From Figure 1 and Figure S2 in
SI, we see that the overall trends of β(t) is decreasing. But the rate of deceasing became smaller
as time travels. As the nonparametric estimates for β(t) are harder to be extended beyond the
data range, we consider fitting the estimated β(t) with a parametric model, and use the latter
for projection to the future. Specifically, to reflect the declining trend of β(t), we consider the
reciprocal regression

β(t) =
b

tη − a
+ et (6)

with error et and unknown parameters a, b and η. The parameters a and b are estimated by
minimizing the sum-of-squares distance between the last 14 day estimates β̂(t) and the fitted
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values for a given η, and then the optimal η is chosen to be the one that gives the minimum
mean square error over a set of candidate values from 0.5 to 5 with 0.1 increment. Let ã, b̃ and
η̃ be the estimated parameters, and β̌(t) = b̃/(tη̃ − ã) be the fitted function. Figure S3 in SI
shows the reciprocal model fits β̂(t) quite well for most of the provinces, especially those with
large number of infected cases.

With the fitted β̌(t), we project {S(t), I(t), R(t)} via the ODEs

dŜ(t)

dt
= −β̌(t)Î(t)

Ŝ(t)

N
,

dÎ(t)

dt
= β̌(t)Î(t)

Ŝ(t)

N
− γ̂T Î(t), (7)

dR̂(t)

dt
= γ̂TÎ(t).

where γ̂T is the estimated recovery rate at time t using the last five days’ data. With the
observed

{
S(T ), I(T ), R(T )

}
at the current time t as the initial values, numerical solutions{

(Ŝ(t), Î(t), R̂(t)) : T ≤ t < ∞
}
for the system (7) could be obtained using the Euler method.

Then, the end time of the epidemic can be predicted as tend = min
{
t : Î(t) < 1

}
, and the

estimated final infected number is N̂final = R̂(tend) + Î(tend).
To conduct statistical inference for the epidemic predictions, we use the bootstrap method.

In particular, we generate parametric bootstrap resampled processes based on the vSIR model
which facilitate the construction of prediction intervals. We regard that the increments of S(t)
and R(t) follow the Poisson processes (Bretó et al., 2009) over time as

−∆S(t) ∼ Poisson {β(t)S(t)I(t)/N} and ∆R(t) ∼ Poisson {γI(t)} .

With the estimated γ̂ and β̂(t), we generate bootstrap samples {(S(b)(t), I(b)(t), R(b)(t))}Tt=1 of
the original process for b = 1, 2, . . . , B.

For each bootstrap resampled
{

(S(b)(t), I(b)(t), R(b)(t))
}T
t=1

, we obtain the estimates βb?(t)
and γb? for β(t) and γ in the same way as for the original sample. Let β̄?(t) =

∑B
b=1 β

b
?(t)/B and

γ̄? =
∑B

b=1 γ
b
?(t)/B be the average of the bootstrap estimates. We employ the bias corrected

bootstrap estimates for β(t) and γ as

β̂b(t) = β̂(t) + (βb?(t)− β̄?(t)) and γ̂b = γ̂ + (γb? − γ̄?)

for b = 1, 2, . . . , B. We then use the reciprocal model (6) to project the future path of β̂b(t),
and use the numerical solution of the vSIR ODEs to predict the end time and the accumulative
number of final infected cases as we described in section 3.4. Let the bootstrap estimates for the
peak time be {tbend}

B
b=1. The 95% prediction interval for the peak time is constructed as the 2.5%

and 97.5% quantiles of {tbend}
B
b=1. Similar bootstrap prediction intervals can be constructed for

the final accumulative infection number Nfinal of the epidemic.

9 Prediction Results

Based on the estimated β(t) over time, we predict COVID-19’s future trajectories as solutions to
the vSIR model. We used data up to February 19 2020 for the prediction under three scenarios
for the recovery rate γ. One uses the empirical estimate based on data to February 19th. As an
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effective cure for the virus has not been found, the estimated recovery rates are quite low. Among
the provinces with more than 100 infections on February 19, Jiangsu had the highest recovery
rate 0.08, followed by Jiangxi, Hebei, Shanghai, Shanxi, Chongqing, Henan (0.07). Hubei, the
province at the center of the epidemic, is 0.025. The other scenarios was to choose γ = 1/14 and
γ = 0.1, which mean the average removal time from diagnosis was 14 and 10 days, respectively,
representing improvement in the treatment for COVID-19 patients as time progressed.

Tables 3 presents the 95% prediction intervals for the end times of the epidemic and the
cumulative number of infected at the ending. The trajectories of I(t) of the proposed vSIR model
are presented in Figure 4 under the three scenarios of the recovery rate. The predicted infection

Table 3: The 95% prediction intervals for the ending times, and the final accumulative number
of infected cases of COVID-19 epidemic in the 30 provinces based on data to Feb 19 2020 with
γ = 0.1. The last column lists the total infected cases (I(t) +R(t)) as Feb 19, 2020.

Province Peak time Ending time N̂final Current

Hubei 2/20 – 2/22 6/20 - 6/21 73857 - 74596 62322
Guangdong 2/9 – 2/9 4/27 - 4/29 1368 - 1412 1347
Zhejiang 2/7 – 2/7 4/26 - 4/27 1225 - 1245 1195
Beijing 2/11 – 2/20 4/17 – 4/20 416 - 436 397

Chongqing 2/10 – 2/10 4/18 - 4/21 581 - 600 565
Hunan 2/10 – 2/10 4/21 - 4/23 1028 - 1046 1021
Guangxi 2/12 – 2/12 4/11 - 4/15 254 - 271 248
Shanghai 2/9 – 2/9 4/12 - 4/16 345 - 365 336
Jiangxi 2/14 – 2/14 4/23 - 4/25 969 - 994 955
Sichuan 2/14 – 2/23 4/25 - 4/28 589 - 619 525
Shandong 2/23 – 3/20 4/19 - 4/21 567 - 584 553
Anhui 2/11 – 2/24 4/26 - 4/28 1044 - 1068 1006
Fujian 2/10 – 2/10 4/13 - 4/16 306 - 320 299
Henan 2/9 – 2/9 4/29 - 5/1 1358 - 1387 1283
Jiangsu 2/15 – 2/15 4/20 - 4/23 662 - 687 640
Hainan 2/19 – 3/9 4/6 - 4/9 174 - 183 168
Tianjin 2/19 – 3/7 4/7 - 4/14 141 - 159 132
Yunnan 2/13 – 2/13 4/7 - 4/11 174 - 187 174
Shaanxi 2/10 – 2/10 4/12 - 4/16 262 - 276 250

Heilongjiang 2/19 – 2/26 4/23 - 4/26 519 - 554 479
Liaoning 2/9 – 2/9 3/31 - 4/3 122 - 126 122
Guizhou 2/12 – 2/12 4/4 - 4/10 150 - 165 147
Jilin 2/9 – 2/9 3/30 - 4/4 93 - 101 92

Ningxia 2/13 – 2/13 3/18 - 3/26 65 - 73 71
Hebei 2/19 – 3/18 4/12 - 4/16 319 - 336 312
Gansu 2/9 – 2/9 3/20 - 3/26 92 - 96 92
Xinjiang 2/19 – 2/29 3/31 - 4/9 78 - 96 78
Shanxi 2/10 – 2/10 4/1 - 4/5 134 - 142 134

Neimenggu 2/14 – 2/14 4/2 - 4/11 78 - 98 76
Qinghai 2/4 – 2/4 2/23 - 3/6 19 - 20 19
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(a) Predicted I(t) for Hubei
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(b) Predicted I(t) for all provinces except Hubei
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Figure 4: Predicted number of infected cases I(t) with 95% prediction interval for Hubei Province
in panel (a) and all other provinces combined except Hubei in panel (b). The grey vertical line
indicates the current date of observation; the blue solid line plots the observed I(t) before Feb
19th; the blue dashed line gives the predicted I(t) with 95% prediction interval (blue shaded
area) with the estimated γ̂T; the pink vertical line indicates the peak date of I(t); the orange
and red dashed line gives the predicted I(t) with 95% prediction interval (shaded area) with
fixed recovery rate γ = 0.1 and γ = 1/14 respectively.
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number Î(t) is within 10% deviation from its observed value based on data up to Feb 19th, see
Table A2 in SI for the detailed prediction error.

From the trajectory of the vSIR model in Figure 4, for the non-Hubei provinces, the number
of infected would quickly decease in late February and March with very few cases left in April
under all the three scenarios. Some provinces with few number of total infected cases may end
as early as March (Qinghai, Jilin, Gansu, Ningxia). For Hubei, with a higher recovery rate of
0.1, the duration of the epidemic would be shorten substantially. The ending time for Hubei is
around June 20 2020 with total number of infection in the range 73,857–74,596. This shows that
improving the recovery rate is an efficient way to end the COVID-19 infection early given the
current decreasing trend of β(t), as it leads to the reduction of the infectious duration.

10 Discussion

The implications of China’s experience in combating COVID-19 to other countries facing the
epidemic are two folds. One is to reduce the person-to-person contact rate by self isolation and
curtailing population movement; another is to reduce the transmission probability by wearing
protective wears when a contact has to be made.

The eventual control of COVID-19 is rested on if the existing control measures can be
continued further for a period of time. The biggest challenges that can jeopardize the great
effort from late January are from the impatient populations eager to get out of the self-isolation
driven by either economic needs (migrant workers eager to coming back to cities for income) or
people trying to escape from the self isolation encouraged by the declining infections in the last
two weeks. In any case, the vSIR model and its statistical estimation and inference can be used
to model and the assess the COVID-19 epidemics in other countries.

Supplementary Materials

The data and R code are publicly available with explanations on various segments of the proce-
dures that we have proposed in this paper; see https://github.com/sun-haoxuan/vSIR. The
supplementary information referred to in the paper can be found on the Journal of Data Science
website.
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Sun et al. proposed a vSIR model with both time-varying transmission rate and removal
rate. Based on the traditional SIR (Kermack and McKendrick, 1927) and SEIR (Hethcote, 2000)
models, the authors introduced some random mechanisms for the daily changes of infected (I)
and removal (R) individuals by assuming the Poisson increments: ∆I (t) and ∆R(t). Also, the
effective reproduction numbers calculated by the vSIR model were time-varying with correspond-
ing 95% confidence intervals, which could effectively reflect the intervention policies of COVID-19
in different regions. In our discussion, we focus on the following points.

The spreads of COVID-19 The spreads of COVID-19 in different regions of China were
accurately estimated. From January 27 to February 17, 2020, the effective reproduction num-
bers of COVID-19 in 30 provinces and 15 cities in Hubei Province decreased significantly. The
effective reproduction numbers had dropped below 1 from February 10 to 17, 2020 in most
provinces, indicating that the epidemic situations in most areas in China had been controlled
after the implementation of a series of interventions and control measures, which was similar to
the conclusion of Tan et al. (2020).

The authors also predicted the ending times of the COVID-19 epidemic through the model
by considering the numbers of cumulative infected cases. By setting the recovery rate to 0.1, their
model estimated that the number of infected individuals would be significantly reduced during
March in China. They obtained the conclusion that the epidemic of COVID-19 outside Hubei
province would be approaching to an end in April. These estimations gave rise to a realistic
predicted trend of the epidemic, which were close to those of Cui and Hu (2020).

Estimation of R14
t The R14

t was overestimated. The basic reproduction number (R0) can be
considered as the expected number of cases directly infected by one primary case in a population
where all individuals are susceptible to infection (Anderson and May, 1992). According to R0s of
COVID-19 reported by Liu et al. (2020), R0s were between 1.4 and 6.49, with an average of 3.28
and a median of 2.79. For the 14-day time-varying effective reproduction number R14

t defined in
the vSIR model, R14

t of 7 cities in Hubei province reached 7.59 on January 27. Since January
23, 2020, the Chinese government has taken stringent measures such as traffic blockade to curb
the epidemic. The R0 of COVID-19 could be similar to the time-varying effective reproduction
number in Hubei province in the early period, or even higher than R14

t of Hubei province on
January 27 as reported by Tan et al. (2020). Thus, the value of R14

t was relatively high in the
early stage of COVID-19 in Hubei province, which may be overestimated.

Factors Affecting the Infection Rate This article did not take into account the infectivity
of the infected individuals or the population of migrants between different areas and some param-
eters are needed to be given in advance. There could be more considerations in the vSIR model.

∗Corresponding author. Email: wangxq20@ustc.edu.cn.
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For example, the confirmed cases could not be infectious once they have been quarantined, while
the infected individuals who should be considered as infectious hosts during the incubation pe-
riod (Tan et al., 2020; Yang et al., 2020), which is not reflected in the SIR or SEIR model. At
the same time, if the method is extended to various countries, the impact of population mobility
in different regions could be considered (Yang et al., 2020; Gilbert et al., 2020). Besides, for
the predictions from the model in the paper, the parameters in the vSIR model were needed to
be specified beforehand. When the model is used to different countries and regions, it may be
necessary to adjust the corresponding parameters subjectively to get better prediction results.

Summaries The authors proposed an adjusted SIR model: vSIR model, which can calculate
effective reproduction numbers of different regions over time, and make predictions for the future
trend. It is effective to evaluate the early epidemic situations in different regions. However,
the paper overestimated the value of R14

t in the early stage of the COVID-19 in China and
the parameters in the vSIR model were needed to be specified in advance. Furthermore, if the
infectivity of infected individuals during the incubation period and the mobility of the population
are incorporated into the model, it would make the model more realistic.
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The paper by Sun et al. is a thoughtful and important work for tracing the transmission
of COVID-19 over the course of outbreak in China. As COVID-19 has been spreading globally
as a pandemic, the lessons obtained from disease mitigation measures in China become more
valuable to other countries and to future infectious diseases.

The authors adopted an epidemiological model, SIR model (Kermack and McKendrick,
1927), of infectious diseases, and made a few key modifications. First, a stochastic version of the
SIR model, Poisson-vSIR model, is proposed to model the incremental numbers of infected and
recovered cases by Poisson distributions, which facilitates statistical inference; more importantly,
the infectious rate is allowed to vary over time and estimated by the reciprocal regression. The
proposed model is applied to cases in provinces and cities of China to calculate the time-varying
infection rate function. Results show that infectious rates significantly decreased after reducing
the person-to-person contact and curtailing population movement, a valuable lesson for other
countries facing surging COVID-19 cases and deaths. In what follows, I will discuss about the
model, the preprocessing of observed data, the effective reproduction number, and the predictions
of model.

The proposed Poisson-vSIR model is based on the Euler method, a numeric method for
ordinary differential equations (Lapidus and Seinfeld, 1971, ODEs), discretizing cases arising from
the continuous time scale to cases modelled at the discretized time scale in days. Recognizing
this numeric step would help appreciate the connection between the ODEs-based SIR model and
the difference equations (DEs)-based Poisson-vSIR model. In the same time, I am curious if
this numeric approximation would cause some discrepancy between two models in terms of the
dynamic of diseases and if higher order of numeric approximation of ODEs, like the Runge–Kutta
method, would make any difference.

A key component of Poisson-vSIR model is the time-varying infection rate function, pre-
specified as a parametric form possibly due to identifiability concerns. There likely exist many
other parametric forms which may not be distinguishable from the current one, given the limited
dataset. What interests me is the observation that the continuous infection rate function fits well
for most of the provinces, even when decisions of reducing the person-to-person contact, e.g. lock-
down of city or “shelter in place”, were commonly effective shortly after the announcement, and
behaviors of person-to-person contact changed abruptly. Do the results of this analysis suggest
the opposite, that behaviors of person-to-person contact change gradually after the abrupt lock-
down? Alternatively, could it be possible that the sudden changes of infection rate is smoothed
out by data preprocessing. The numbers of infected and recovered cases are subjected to un-
derreporting bias, availability of test kits, and changes of diagnosis and report criteria, among
other factors. For example, 15,152 new cases were reported of February 12 2020 in China, about
600% surge over the preceding day, largely due to the changes of criteria how cases are diagnosed
and reported. Without adjusting such “outliers”, the results from the Poisson-vSIR model would
be misleading. To deal with it, moving average filter was applied. While moving average will
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filter outliers, it might also smooth out the short-term exponential growth trend or some change
points due to intervention policies. Additional sensitivity analysis would be of interest.

The main story of paper is built around the effective reproduction number. The authors
considered two possible forms: Rt = β̃(t)/γ(t), where β̃(t) is the filtered infectious rate and γ(t)
is the removal rate; and RDt = β(t)D, where β(t) is the unfiltered infectious rate and D is an
average infectious duration, which can be viewed as a special case with γ (t) remains constant
over time. Authors preferred RDt and pointed out that γ(t) involved in Rt is highly volatile
at the early stage of COVID-19, which makes it critical to choose the proper plug-in value of
average infectious duration D. Even so, the variability of such D could also make a difference
in constructing confidence intervals for RDt . As COVID-19 comes to an end in China, it may
be worthwhile revisiting the point estimation and variance of D, and updating the estimation of
RDt accordingly. In addition, how volatile the β(t) would be at the early stage of COVID-19 and
if changes of RDt over time are statistically significant?

Policies of public mitigation relie on the predicted trajectory of infectious disease more than
ever. For example, in order to justify the prolonged “stay at home” policy, members of the US
Coronavirus Task Force explained the future outlook of COVID-19 in US based on the prediction
of epidemiological models during a press briefing on March 30, 2020. To examine the promise
of data-driven policy making, it would be of interest to evaluate if the observed trajectories of
COVID-19 in provinces or cities of China follow the predicted ones by the proposed model closely
and what lessons have be gained from predicting trajectories of infectious disease.

After fighting through the COVID-19 pandemic with blood, toil, and tears, it is the time to
reflect. The tools developed by Sun et al. and lessons offered would be very valuable for a swift
response to the next pandemic. More such efforts are desired.
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We congratulate the authors on an interesting contribution to the Susceptible-Infection-
Removed (SIR) modeling. In this paper the authors have focused on the development of a
fast and flexible framework to incorporate a time-varying effective reproduction number (Rt)
into the SIR model. Through estimation and extrapolation of such a time-varying effective
reproduction number (Rt), this new model can predict time-varying reproduction profiles critical
to the understanding of covid-19 disease evolution in China. The use of a reciprocal regression
technique enables forecast the number of future infectious cases with a certain confidence level.

Let the numbers of individuals in the compartments of susceptible, infected and removed be,
respectively, St, It and Rt, which are changing over time t. Let Nt = It +Rt be the cumulative
number of infected cases and N = St + It + Rt be the target population under investigation,
which is fixed constant over time. To reduce noise, the authors applied a local smoothing by the
moving average of three data points on the three compartment time series. The authors proposed
a local linear fitting approach to estimating the nonlinear transmission rate βt and removal rate
γt at each target time t conditional on It via the following two local linear models at a target
time t1: log(It) ∼ log(It1) + (βt − γt)(t− t1), and Rt1+δ − Rt1 ∼ γtIt1 , where δ > 0 is set to be
1. Because the number of removed cases, i.e. a total number of deaths and recovered cases, are
often collected and reported mostly by hospitals several weeks after virus contract and infection,
the observed series Rt is typically delayed and incomplete, and thus there is a concern with the
reliability of such data in a small local time window used in the estimation. The data quality
issue may result in unstable local estimation of the transmission rate γt at a time point. The
authors suggested using RDt = βtD to estimate the time-varying effective reproduction number,
where D is a prefixed infectious duration varying from 7 to 14 days.

For the prediction purpose, the authors considered a parsimonious nonlinear model that
enables extrapolation of the estimated βt into the future time. The transmission rate is assumed
to satisfy the reciprocal regression model

βt =
b

tη − a
+ et,

where a, b, and η are the parameters to be estimated and et is the error. In addition, both
projected Nt and Rt are obtained following the SIR ordinary differential equations using Euler
method. The bias correction and estimating inference were achieved via a bootstrap method. In
particular, we notice that the confidence intervals provided in their Figure 5 were very narrow,
which does not seem to capture much certainty from the infection dynamic system well. This
underestimation of uncertainty might result from maximizing a conditional likelihood (given It)
in their equation (3) and data pre-processing via an average filtering procedure.

To gain some insights of the above reciprocal regression model for the transmission rate, we
implemented this time-varying βt in an analysis of the COVID19 data of Hubei, China using
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Figure 1: The time-varying effective reproduction number R14
t with or without data calibration,

where the dashed line denotes the event of ending infection with R14
t = 1.
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Figure 2: The estimated and predicted mean (grey) and median (red) infection prevalence (right)
with transmission rate modifiers π̂(t) (left) fitted by eSIR model using data up to February 18,
2020.

our epidemiological forecast SIR model (Wang et al., 2020). We set D = 14 (or two weeks or
the infectious duration that sums the average incubation period and hospitalization time) and
computed R14

t with or without data calibration used to deal with an abrupt jump of infected
cases on February 12, which is mostly due to the issue of under-reporting before February 12.
Figure 1 indicates that the estimated R14

t appears much smoother (the right panel) with no
artificial bumps for the one obtained with the correction for under-reporting than the other
obtained with no correction for the under-reporting (the left panel). Note that the reported
turning date in Hubei is February 18, which is roughly coincides with the estimated R14

t = 1;
see the crossing point of the dashed line and the estimated R14

t in Figure 1.
Given that the proportion of cumulative infected cases is very small in comparison to the

size of population, one may assume that s(t) = St/N ≈ 1. In this case, we may rewrite the
transmission rate βt as a multiplicative form βt = β0π(t), in which β0 is the transmission rate and
π(t) is termed as a transmission rate modifier (Wang et al., 2020). This modifier may be thought
of as a consequence of social distancing, self-quarantine, and other preventive interventions issued
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during the period of the epidemic in Hubei.
It follows that we obtain an estimate of the transmission rate modifier π(t) as follows:

π̂(t) = β̂t/β0. The estimated π̂(t) and its extrapolation are shown in the left panel of Figure 2.
we ran the eSIR model (Wang et al., 2020) and obtained the projected infection dynamics in
the right panel of Figure 2. Based on results from the eSIR model, we obtained the estimated
parameters and their 95% confidence intervals, respectively: the transmission rate β̂0 = 0.123 (CI:
[0.0422, 0.256]), the removal rate γ̂ = 0.0257 (CI: [0.0144, 0.0389]), and the basic reproduction
number R0 = 4.71 (CI: [2.20, 8.60]) adjusting the time-varying transmission modifier due to
various preventive measures implemented in Hubei Province.

In summary, the authors developed a new framework from which one can estimate a time-
varying transmission rate and consequently a time-varying effective reproduction number. Their
method can provide a way to derive a transmission rate modifier useful in our eSIR model (Wang
et al., 2020).
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We thanks the valuable comments from the research team (Wang et al.) from University of
Michigan led by Professor Peter Song, the team (Jiang et al.) from Sun Yat-Sen University and
University of Science and Technology of China led by Professor Xueqin Wang, and Professor Lu
Tang from University of Pittsburgh. These comments broaden the scope of our work.

Contact Rate Estimation We are very pleased to see the extension by Wang et al. for
estimating the contact rate function π(t) from the estimated time-varying infection rate function
β̂(t). Indeed, the contact rate function is directly reflective to the effects of the early COVID-19
control measures in China which were largely designed to reduce human contacts.

Euler and Higher Order Approximations to ODEs Professor Tang’s comments on more
accurate discretization of the ODEs are valuable. While the estimator for β(t) is directly moti-
vated by the ODEs of the vSIR model, it can be also formulated under the discrete Poisson-vSIR
model under a fixed ∆t (which is daily in our study) as indicated before (1) of the paper. Hence,
from the prospect of the statistical Poisson-vSIR model, there is no need to conduct the high or-
der correction to the ODEs, although for practical performance such implementation can reduce
the bias of the estimation.

Parametric Form of Infection Rate The comment by Professor Tang regarding the es-
timation of the infection rate β(t) as parametric was perhaps based on the reciprocal model
(5) proposed for forecasting purposes (to project the future course of the infection rates). Our
in-sample estimator of β(t) is the nonparametric kernel estimator.

Gradual Effects of Abrupt Lockdowns Regarding Professor Tang’s comments on the
smoothed β(t) estimates despite many provinces took sudden preventive actions, the epidemic
system from contacts to infections then to diagnosis is a convoluted delayed process. The sudden
application of the lock-downs is smoothed by the delayed effects of infections, and the time gap
from the onset of the disease to diagnosis, which would make the observed β(t) smooth without
sudden drops.

Moving Average Filters and the Big Revision of Statistics The moving average filter is
applied to remove measurement errors. However, the moving average filter is incapable to deal

∗The corresponding authors are Song Xi Chen (csx@gsm.pku.edu.cn) and Yumou Qiu (yumouqiu@iastate.edu).
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Figure 1: The estimated γ̂(t) from the varying coefficient SIR model (solid) and 1/14 (dashed)
for the data to Mar 2nd 2020 for 30 provinces.

with the big revision of statistics on February 12th, 2020 in Wuhan. As shown in Section 5,
we had applied a one-side linear filter that re-distributes the spikes in the Hubei cities to the
previous 7 days with decreasing weights ranging from 7/28 to 1/28.

Roles of Infectious Duration D on Rt Professor Tang’s question on D’s role on Rt and
its variation in D is timely and important. A major challenge in the estimation of Rt is the
volatility of γ(t) in the early stage of the epidemic. We adopt the formulation of RDt = β(t)D.
Rather than estimating D, we assign three sets of D values in our analysis, D = 7, 10.5 and 14.
The narrow confidence intervals for Rt observed by Wang et al. are likely due to the use of the
fixed D. A wider confidence intervals would appear by adopting the Dt = β(t)/γ(t) version via
the parametric bootstrap. We have updated Figure 3 (See Figure 1) on the removal rates γ(t)
to March 2nd 2020, which shows a general increasing trend in the infection rates.

Regarding the possible over-estimation of R14
t in Hubei cities other than Wuhan raised by

Jiang et al., we would say that the idea of using three D values to provide a range of RDt values
that R14

t serves as the worse case scenario and hence may over-estimate. In this case, one may
use R10.5

t . Another matter that is in play in the early stage of epidemic is the high volatility in
the infection rate estimation despite of adopting a fixed D version, which may explain the high
volatility and the diverse ranges of Rt estimates in the literature.
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Infection in the Incubation Period and Population Mobility. As rightly pointed out
by Jiang et al., the vSIR framework, which consists of only three compartments, does not ac-
commodate infection in the incubation period, neither the four compartments SEIR model. In
a following up work (Gu et al., 2020) we have proposed an extended SEIR model, called the
vSEIdR model, which allows infections in both the exposed and infection states. Population mo-
bility or migrations are also not considered, which can be accommodated by adding an extra term
to the susceptible population counts S(t) to reflect immigration or emigration respectively, and
a certain percentage of the immigrants (emigrants) are infected patients (imported or exported
cases). Doing so would require population mobility data. We hope to conduct such research in
a future project.
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