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Abstract

COVID-19 is a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) that was reported to spread in people in December 2019. Understanding epidemiological
features of COVID-19 is important for the ongoing global efforts to contain the virus. As a
complement to the available work, in this article we analyze the Kaggle novel coronavirus dataset
of 3397 patients dated from January 22, 2020 to March 29, 2020. We employ semiparametric
and nonparametric survival models as well as text mining and data visualization techniques to
examine the clinical manifestations and epidemiological features of COVID-19. Our analysis
shows that: (i) the median incubation time is about 5 days and older people tend to have a
longer incubation period; (ii) the median time for infected people to recover is about 20 days,
and the recovery time is significantly associated with age but not gender; (iii) the fatality rate
is higher for older infected patients than for younger patients.

Keywords incubation time; recovery time; risk factors; survival analysis; symptom onset; text
mining.

1 Introduction

SARS-CoV-2 (Lai et al., 2020) is a member of coronaviruses family which causes a transmittable
infectious respiratory disease known as COVID-19. The novel coronavirus was first reported in
December 2019 in the city of Wuhan, China (Zhang et al., 2020). On March 11, 2020, the World
Health Organization (WHO) upgraded the status of the COVID-19 outbreak from epidemic to
a global pandemic and now almost all countries have reported confirmed cases with the USA
having the highest number of confirmed cases (Worldometers, 2020). As of May 21, 2020, the
WHO reported 4,893,186 confirmed cases with 323,256 deaths.

Estimating the incubation period is crucial for the disease control. Having a sensible esti-
mate of the median incubation time helps the government and healthcare sector decide a ratio-
nale quarantine time. Estimating recovery times for infected patients is of great importance for
healthcare workers to effectively allocate the limited medical resources to cope with the COVID-
19 crisis. Moreover, understanding the relationships of demographic factors, such as age and
gender, with COVID-19 is essential as it helps healthcare professionals prioritize treatment of
patients with different characteristics. While various efforts have been made to study the be-
haviour of SARS-CoV-2 since the outbreak of COVID-19, the understanding of COVID-19 has
been constantly enhanced as more COVID-19 data become available. Extensive evidence-based
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Table 1: Age distribution of infected cases by gender: The entries display the number and the
percentage (in parentheses) for each cohort.

Age range (in year)

0-19 20-39 40-59 60-79 80-96 Total

Male 28 (3%) 193 (24%) 313 (38%) 242 (30%) 41 (5%) 817
Female 25 (4%) 168 (27%) 212 (34%) 186 (29%) 41 (6%) 632

studies from multiple angels are required to comprehensively unveil the clinical characteristics of
COVID-19 by examining the data coming from different sources as the pandemic evolves.

To this end, here we study the Kaggle novel coronavirus dataset from January 22, 2020 to
March 29, 2020, to be described in detail in Section 2, to preliminarily examine the following
questions: (1). What is the average time of symptom onset? (2). How long does it take for
infected patients to recover? While each of these questions warrants in-depth research when
more data become available with the evolvement of COVID-19, here we focus on providing
an exploratory analysis using the techniques of data visualization and text mining as well as
modeling of survival data. We hope such a study will offer intuitive insights into future in-depth
research of each topic.

The remainder of this article is organized as follows. In Section 2 we describe the data
and examine different features of COVID-19 by data visualization. In Section 3 we employ
survival analysis techniques to estimate the distribution of recovery times for infected patients.
In Section 4 we estimate the average time of symptom onset. We conclude the manuscript with
discussion in the last section.

2 Data Visualization

2.1 Data Description

In this study, we use the Kaggle novel coronavirus dataset from January 22, 2020 to March
29, 2020. The dataset, available as Google spreadsheet at https://www.kaggle.com, has been
updated automatically every five minutes based on Johns Hopkins Center for System Science
and Engineering (CSSE) data (https://github.com/CSSEGISandData/COVID-19). The dataset
consists of measurements of 3397 people with the novel coronavirus from 39 countries including
those in Europe, Asia, and Africa. There are 14 variables representing the summary, location,
country, gender, age, symptom onset, hospital visit date, exposure start, exposure end, visiting
Wuhan, from Wuhan, death, recovery status, and symptoms of the infected cases. Using the infor-
mation given in the summary, exposure start, exposure end, symptom onset, and recovery status,
we further extract more specific information from the original dataset, including infection source,
travel history, time gap between exposure to symptom onset, and time gap between symptom on-
set to recovery. A copy of the dataset is available at https://github.com/YasinKhc/Covid-19.
Among 3397 patients, only 1449 of them have the information of age which ranges from 3 months
to 96 years. In Table 1 we present the age distribution of infected cases separately for females
and males.

https://www.kaggle.com
https://github.com/CSSEGISandData/COVID-19
https://github.com/YasinKhc/Covid-19
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Figure 1: Barplots for the number of deceased cases and fatality rate.
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Figure 2: Barplots for the recent travel history and infection source

2.2 Descriptive Analysis

Among the 3397 patients, we found that older people have a higher fatality rate comparing to
younger people. The mean and median of age for deceased cases were found to be 71.5 and
73.5, respectively. The left graph in Figure 1 displays the side by side barplots for the counts of
deceased cases for males and females divided into six age groups, and the right graph in Figure 1
records the fatality rate for men and women in the six age groups, where the fatality rate is
calculated as the ratio of the number of deaths in an age group with a given gender to the
number of infected cases in that group. It is clear that the fatality rate increases with age, and
the fatality rate for men in each age group appears higher than that for women. These results
are consistent with those reported by Jin et al. (2020).

We further perform the Chi-square test of independence (Pearson, 1900) to determine
whether there is a statistically significant association between age/gender and fatality. For the
null hypothesis that the fatality rate is identical for all the age groups, we obtain the p-value of
the Chi-square test to be 0.0005. For the null hypothesis that the fatality rate is identical for
males and females, we obtain the p-value of the Chi-square test to be 0.0748.

The left plot in Figure 2 shows that around 28% of the infected people had a recent travel
history. The right plot in Figure 2 reports that 13% of the cases had a close contact with other
infected people, and the source for the rest large portion (87%) of infections remains unknown,
which is very likely due to undetected community transmissions.

To understand what symptoms are most related to infected cases with COVID-19, we per-
form a text analysis using word clouds (Viégas and Wattenberg, 2008) which typically visualize
word frequencies by using different sizes of words. The more common a term appears in a text
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Figure 3: Word cloud of the symptoms.

dataset, the larger and bolder it appears in the word cloud. Word clouds are an intuitive tool
in visualizing and highlighting words with greater prominence. To generate a word cloud for
symptoms of COVID-19, we first collapse the summary into a single text document and extract
the terms and words of describing the symptoms of infected patients, and then store them in
a new text document. Thereafter, different medical words and terms that represent a specific
symptom are summarized as a single unique word or term. For example, in the summary, besides
difficulty breathing, three other terms were alternatively used to describe the same symptom re-
lated to breathing: shortness of breath, dyspnea, and respiratory distress. In our text analysis
here, we classify them as the same description for the symptom of breathing and then unify
them with the term “difficulty breathing”. Next, using the obtained text document and the word
cloud generator in the package wordcloud of R, we summarize the symptoms for 652 COVID-19
infected patients in Figure 3. It is clearly seen that fever, cough and pneumonia are the most
frequent symptoms reported by those patients.

3 Examination of Recovery Time

To help the government and health authorities prepare for major spikes of the number of new
COVID-19 infected cases, it is important to estimate the time for infected patients to recover.
In this section, we use survival analysis techniques to study recovery times of infected patients.
Here the recovery time of an infected patient, denoted as T , is taken as the time-to-event, or
survival time, using the terminology in survival analysis (e.g., Lawless, 2003). In other words,
the event is defined to be recovered, and hence, patients who die from COVID-19 are treated as
censored.

First, we use the distribution-free Kaplan-Meier approach to examine the survivor function
S(t) = P (T > t) for the recovery time, where t ∈ [0, 45] with [0, 45] representing the study period
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Table 2: Median recovery time for male and female.

Gender The number of
infected patients

The number (percentage)
of recovery Median 95% Confidence interval

Female 52 43 (83%) 20 (17, 21)
Male 89 58 (65%) 20 (19, 23)

Table 3: Median recovery time (in day) for different age groups.

Age group The number of
infected patients

The number (percentage)
of recovery Median 95% Confidence interval

0-40 47 45 (96%) 18 (16, 20)
41-60 50 45 (90%) 20 (17, 22)
61-96 43 10 (23%) 26 (21, 30)

of 45 days, and 0 is defined as the time of symptom onset for an infected patient.
We examine the recovery time from three angels. First, we do not distinguish infected cases;

secondly, we classify the infected cases into two groups by gender; thirdly, we divide the infected
cases into three age groups: (0, 40], (40, 60], and (60, 96]. The corresponding Kaplan-Meier
estimates are reported in Figure 4. The top panel of Figure 4 illustrates the Kaplan-Meier time-
to-recovery survival curve for all the infected cases, where the red curve represents the estimated
probabilities, the red shaded areas stand for the 95% confidence region, and patients who are
censored are marked with + signs. The dashed dark lines indicate the survivor probability at
the median recovery time, saying that with 50% of the probability an infected patient takes
more than 20 days to recover (if they would recover). A 95% confidence interval for the median
recovery time is (19, 21).

The middle panel of Figure 4 shows the Kaplan-Meier survival curves of recovery times for
men and women, which are not considerably different. Furthermore, applying the log-rank test
(Harrington, 2005) to assess whether or not the difference between the two curves is statistically
significant, we obtain that the p-value is 0.5, clearly showing no evidence that the recovery time
differs for men and women. The details of median recovery times and their corresponding 95%
confidence intervals for men and women are reported in Table 2.

The bottom panel of Figure 4 displays the Kaplan-Meier survival curves for the three age
groups. It can be visually concluded that people of older age are more likely to have longer
recovery times. The corresponding log-rank test yields the p-value to be 10−4, supporting that
the differences in recovery times for different age groups are statistically significant. Median
recovery times and their corresponding 95% confidence intervals for the three age groups are
summarized in Table 3.

Next, we quantify how the recovery time is associated with age and gender by employing
the semiparametric accelerated failure time (AFT) model:

log T = β0 + β1 × gender+ β2 × age+ ε,

where β0 is the intercept, β1 and β2 are regression parameters, and ε is the error term with mean
zero and an unspecified probability distribution. For ease of interpretation, we use ten years
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Figure 4: Kaplan-Meier time-to-recovery survival curves
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Table 4: Analysis results of recovery times under the semiparametric AFT model.

Parameters Estimate Standard error 95% Confidence interval

Intercept (β0) 2.498 0.119 (2.265, 2.731)
gender (β1) 0.066 0.069 (−0.069, 0.201)
age (β2) 0.094 0.022 (0.051, 0.137)

as the unit of age, as suggested by the editor. Estimation of the parameters can be obtained
using the generalized least squares approach (e.g., Chiou et al., 2014); the results are reported
in Table 4.

The analysis results show no evidence that recovery times differ in women and men. Age
is found to be significantly related to the recovery time. Older infected patients need a longer
time to recover from COVID-19. Exponentiating the estimate of β2, we quantify the age effect
on the recovery time. With the gender effect adjusted, ten years older in age would extend the
recovery time by 9.9%.

4 Gap Time between Exposure and Symptom Onset

One of the major concerns that healthcare workers and the government have been trying to
address is on stealthy transmissions of COVID-19. Researchers in Columbia University’s Mailman
School of Public Health used a computer model to show how undetected cases may boost the
spread of the COVID-19 outbreak in China. They showed that the virus spread was rapid and
its containment was challenging (Li et al., 2020). Understanding the average gap time between
the time of exposure to the virus and symptom onset for infected patients is useful for healthcare
workers and the government to make effective measures to curb the spread of the virus.

Among the 3397 infected people, 207 reported both the time for exposure and the symptom
onset time. The time of exposure is taken as an approximate time a patient contracted the
virus by having a close contact with someone who was already infected or travelling to infected
areas. The symptom onset date is based on the time when an infected patient experienced
flu-like symptoms such as fever, sore throat, in more severe cases, difficulty breathing. Eighty-
five patients reported a time interval for exposure spanning from 1 to 27 days. We treat those
exposure intervals with a length less than one day as a single time point. To understand the
underlying incubation times for infected cases who reported different types of information on
infection, we estimate the median and average incubation times for the cohort of 3397 infected
patients using the following three methods:
• Method 1: the time period between the start time of exposure and symptom onset;
• Method 2: the time period between the end time of exposure and symptom onset;
• Method 3: we use the middle point of the time interval to approximate the exposure time,

and take the time period between the approximated exposure time and symptom onset.
For 140 patients who reported only a single time point for exposure, these three methods yield the
same values. For the cohort of 3397 infected cases, Method 1 yields that the mean and median
incubation times to be 8.4 and 6 days, respectively; Method 2 outputs a lot smaller mean and
median incubation times which are respectively 3.3 and 2 days; and Method 3 gives that the
mean and median of the incubation period are 5.8 and 5 days, respectively. The estimates of
Method 3 are similar to those reported by Lauer et al. (2020) and Han (2020). Lauer et al.
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Figure 5: Boxplots of estimated incubation times by gender and three age groups.

(2020), by conducting a pooled analysis of 181 infections reported between January 4, 2020 and
February 24, 2020, found that median incubation period to be 5.1 days. Han (2020) used a
chain-of-infection data collected from 10 regions in China to estimate the median incubation
period. They employed different statistical approaches such as Monte-Carlo simulations as well
as non-parametric methods and estimated that the mean and median of incubation times are 5.8
and 5 days, respectively.

To show how incubation times may differ between females and males, in the left panel of
Figure 5 we report the boxplots of the incubation times obtained from Method 3 for 31 females
and 49 males. To see possible age effects, in the right panel of Figure 5 we graph the incubation
times for three age groups, where 21, 30, and 25 patients are included in the age groups of
0-34, 35-54, and 55-96, respectively. The median incubation period for patients aged within
35-54 is the largest, and the median incubation period for patient over 55 years of age is slightly
longer than that of the age 0-34 group. However, incubation times for older patients have more
variability than those for younger infected cases.

5 Discussion

In this article we explore epidemiological characteristics of COVID-19 by studying a Kaggle novel
coronavirus dataset, dated from January 22, 2020 to March 29, 2020, which includes 3397 infected
cases and 83 deaths from COVID-19. We find that the median incubation time of COVID-19
is about 5 days. Our text analysis shows that the most dominant symptoms of COVID-19
are fever, cough, and pneumonia. The non-parametric Kaplan-Meier method yields a median
recovery time of 20 days for infected patients who are not stratified by their characteristics. Our
findings further suggest that the recovery time increases as the age increases, and there is no
significant gender-difference in recovery times.

As discussed by He et al. (2020), while many studies examined epidemiological characteristics
of COVID-19, those studies do not necessarily reveal the same findings or similar estimates of
the same measure. For instance, regarding the estimate of the average incubation times, He
et al. (2020) reviewed five studies conducted between December 31, 2019 and February 24, 2020,
and those studies reported varying estimates of the average incubation time, ranging from 4.9
days to 6.4 days. In addition, we note that our estimate of the median incubation time differs
from the estimate, 8.1 days, provided by Qin et al. (2020). The discrepancies in estimating the
same quantity are primarily attributed to the heterogeneity in different studies, including the
differences in the time window, the study subjects, the study design, the model assumptions,
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and the measures of controlling the virus spread by different regions.
We point out that the validity of the analysis results here relies on the quality of the Kaggle

data we use. In our analysis we ignore missing observations, which is basically driven by the
perception that missingness arises completely at random. However, when such an assumption is
not feasible, proper adjustments of missingness effects are generally expected. On the other hand,
as commented by a referee, reporting bias and recall bias should be aware of when analyzing the
COVID-19 data. If the degree of such biases are not mild, then proper de-biasing adjustments
should be introduced in inferential procedures to yield valid or nearly valid analysis results.
Methods of addressing effects of error-in-variables can be employed for this purpose. For detail,
see Carroll et al. (2006) and Yi (2017).

Finally, we note that our analysis results are obtained from using the reported information
for those patients who were assessed by medical personnel. The information for infected patients
with mild symptoms or asymptomatic infections was often not available for being included in
the dataset, because those patients did not go to hospital for assessment. As a result, when
interpreting the results, care is needed for the target population.

Supplementary Materials

The data and R code needed to reproduce the results in this paper can be found at the Journal
of Data Science website.
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